

3.3V CMOS 12-BIT TO 24-BIT MULTIPLEXED D-TYPE LATCH WITH 3-STATE OUTPUTS

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- $VCC = 2.5V \pm 0.2V$
- CMOS power levels (0.4

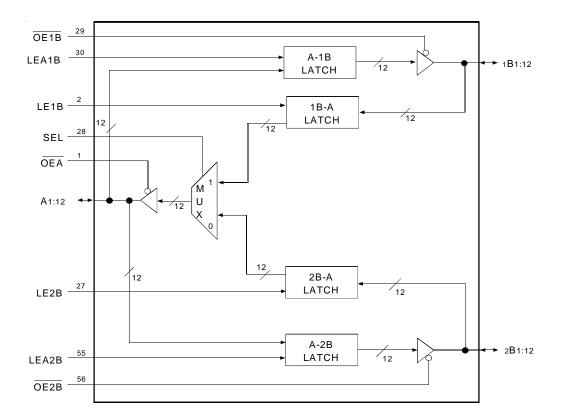
 W typ. static)
- · Rail-to-Rail output swing for increased noise margin
- · Available in SSOP, TSSOP, and TVSOP packages

DRIVE FEATURES:

- · High Output Drivers: ±24mA
- · Suitable for heavy loads

APPLICATIONS:

- · 3.3V high speed systems
- · 3.3V and lower voltage computing systems

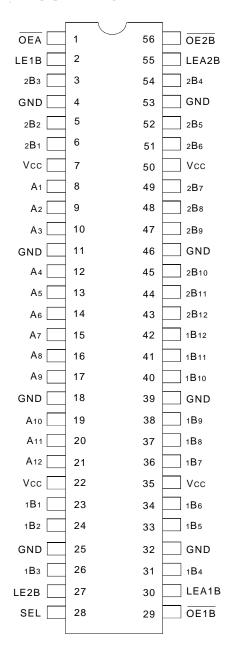

DESCRIPTION:

This 12-bit to 24-bit multiplexed D-type latch is built using advanced dual metal CMOS technology. The ALVC16260 is used in applications in which two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing and/or demultiplexing address and data information in microprocessor or bus-interface applications. This device also is useful in memory interleaving applications.

Three 12-bit I/O ports (A1-A12, 1B1-1B12, and 2B1-2B12) are available for address and/or data transfer. The output-enable $(\overline{OE2B}, \overline{OE2B},$ and $\overline{OEA})$ inputs control the bus transceiver functions. The $\overline{OE2B}$ and $\overline{OE2B}$ control signals also allow bank control in the A-to-B direction. Address and/or data information can be stored using the internal storage latches. The latch-enable (LE1B, LE2B, LEA1B, and LEA2B) inputs are used to control data storage. When the latch-enable input is high, the latch is transparent. When the latch-enable input goes low, the data present at the inputs is latched and remains latched until the latch-enable input is returned high.

The ALVC16260 has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

MARCH 1999

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lıĸ	Continuous Clamp Current, VI < 0 or VI > VCC	±50	mA
Іок	Continuous Clamp Current, Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	7	pF
Соит	Output Capacitance	Vout = 0V	7	9	pF
Соит	I/O Port Capacitance	VIN = 0V	7	9	pF

NOTE:

1. As applicable to the device type.

FUNCTION TABLES(1)

B-TO-A ($\overline{OEB} = H$)

	Inputs					Output
1Bx	2Bx	SEL	LE1B	LE2B	ŌĒĀ	Ax
Н	Х	Н	Н	Х	L	Н
L	Χ	Н	Н	Χ	L	L
Х	Х	Н	L	Х	L	A ₀ ⁽²⁾
Х	Н	L	Х	Н	L	Н
Х	L	L	Х	Н	L	L
Х	Х	L	Х	L	L	A ₀ ⁽²⁾
Х	Х	Χ	Х	Х	Н	Z

FUNCTION TABLES (CONTINUED)(1)

A-TO-B ($\overline{OEA} = H$)

	Inputs					outs
Ах	LEA1B	LEA2B	OE1B	OE2B	1Bx	2Bx
Н	Н	Н	L	L	Н	Н
L	Н	Н	L	L	L	L
Н	Н	L	L	L	Н	2B ₀ ⁽²⁾
L	Н	L	L	L	L	2B ₀ ⁽²⁾
Н	L	Н	L	L	1B ₀ ⁽²⁾	Н
L	L	Н	L	L	1B ₀ ⁽²⁾	L
Х	L	L	L	L	1B ₀ ⁽²⁾	2B ₀ ⁽²⁾
Х	Х	Χ	Н	Н	Z	Z
Х	Χ	Χ	L	Н	Active	Z
Х	Х	Χ	Н	L	Z	Active
Х	Х	Х	L	L	Active	Active

NOTES:

- H = HIGH Voltage Level
 L = LOW Voltage Level

 - X = Don't Care

 - Z = High Impedance ↑ = LOW-to-HIGH transition
- 2. Output level before the indicated steady-state input conditions were established.

PIN DESCRIPTION

Pin Names	I/O	Description
Ax (1:12)	I/O	Bidirectional Data Port A. Usually connected to the CPU's address/data bus.
1Bx (1:12)	I/O	Bidirectional Data Port 1B. Usually connected to the even path or even bank of memory.
2Bx (1:12)	I/O	Bidirectional Data Port 2B. Usually connected to the odd path or odd bank of memory.
LEA1B	I	Latch Enable Input for A-1B Latch. The latch is open when LEA1B is HIGH. Data from the A-port is latched on the HIGH to LOW transition of LEA1B
LEA2B	I	Latch Enable Input for A-2B Latch. The latch is open when LEA2B is HIGH. Data from the A-port is latched on the HIGH to LOW transition of LEA2B
LE1B	I	Latch Enable Input for 1B-A Latch. The latch is open when LE1B is HIGH. Data from the A-port is latched on the HIGH to LOW transition of LE1B
LE2B	I	Latch Enable Input for 2B-A Latch. The latch is open when LE2B is HIGH. Data from the A-port is latched on the HIGH to LOW transition of LE2B
SEL	I	1B or 2B Port Selection. When HIGH, SEL enables data transfer from 1B Port to A Port. When LOW, SEL enables data transfer from 2B Port to A Port.
ŌĒĀ	I	Output Enable for A Port (Active LOW)
OE1B	I	Output Enable for 1B Port (Active LOW)
ŌĒ2B	I	Output Enable for 2B Port (Active LOW)

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Cor	nditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V			_	0.7	V
		Vcc = 2.7V to 3.6V			_	0.8	
lih	Input HIGH Current	Vcc = 3.6V	VI = VCC	_	_	±5	μA
lıL	Input LOW Current	Vcc = 3.6V	VI = GND	_	_	±5	μA
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc	_	_	±10	μΑ
lozl	(3-State Output pins)		Vo = GND	-	_	±10	
Vik	Clamp Diode Voltage	VCC = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
Vн	Input Hysteresis	Vcc = 3.3V			100	_	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	Vcc = 3.6V VIN = GND or Vcc		_	0.1	40	μΑ
∆lcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other in	nputs at Vcc or GND	_	_	750	μA

NOTE:

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Cor	nditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	IOH = -6mA	2	_	
		Vcc = 2.3V	IOH = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V	1	2.4	_	
		Vcc = 3V	IOH = - 24mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IOL = 12mA	_	0.4	
		Vcc = 3V	IoL = 24mA	_	0.55	

NOTE:

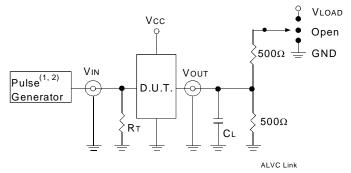
^{1.} Typical values are at Vcc = 3.3V, +25°C ambient.

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = -40°C to + 85°C.

OPERATING CHARACTERISTICS, Ta = 25°C

			Vcc = 2.5V ± 0.2V	$Vcc = 3.3V \pm 0.3V$	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
CPD	Power Dissipation Capacitance Outputs enabled	CL = 0pF, f = 10Mhz	37	41	pF
CPD	Power Dissipation Capacitance Outputs disabled		4	7	

SWITCHING CHARACTERISTICS(1)


		Vcc = 2.	5V ± 0.2V	V cc	= 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t PLH	Propagation Delay	1	5.4	_	5.1	1.2	4.3	ns
t PHL	Ax to 1Bx or Ax to 2Bx							
t PLH	Propagation Delay	1	5.4	_	5.1	1.2	4.3	ns
t PHL	1Bx to Ax or 2Bx to Ax							
t PLH	Propagation Delay	1	5.6	_	5.2	1	4.4	ns
t PHL	LEXB to Ax							
t PLH	Propagation Delay	1	5.6	_	5.2	1	4.4	ns
tphl.	LE1B to 1BX or LEA2B to 2Bx							
t PLH	Propagation Delay	1	6.9	_	6.6	1.1	5.6	ns
tphl.	SEL to Ax							
tpzh	Output Enable Time	1	6.7	_	6.4	1	5.4	ns
tpzl	$\overline{\text{OEA}}$ to Ax, $\overline{\text{OE1B}}$ to 1Bx, or $\overline{\text{OE2B}}$ to 2Bx							
tphz	Output Disable Time	1	5.7	_	5	1.3	4.6	ns
tplz	$\overline{\text{OEA}}$ to Ax, $\overline{\text{OE1B}}$ to 1Bx, or $\overline{\text{OE2B}}$ to 2Bx							
tsu	Set-up Time, data before LE1B, LE2B, LEA1B, LEA2B	1.4	_	1.1	_	1.1	l –	ns
tH .	Hold Time, data after LE1B, LE2B, LEA1B, LEA2B	1.1	_	1.9	_	1.5	l –	ns
tw	Pulse Duration, LE1B, LE2B, LEA1B, or LEA2B HIGH	3.3	_	3.3	_	3.3	_	ns
tsk(o)	Output Skew ⁽²⁾		_	_	_		500	ps

NOTES:

- 1. See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to + 85° C.
- 2. Skew between any two outputs of the same package and switching in the same direction.

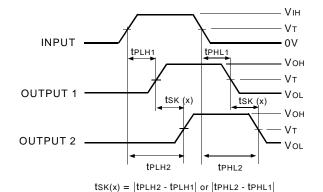
TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ = 2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
ViH	2.7	2.7	Vcc	V
VT	1.5	1.5	Vcc / 2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

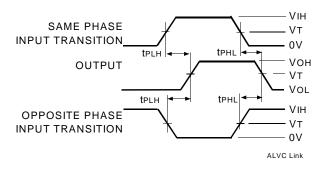

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

NOTES:

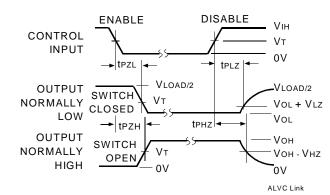
- 1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open



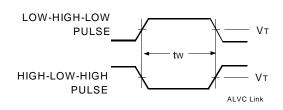
tout Skow touly)


Output Skew - tsk(x)

NOTES:

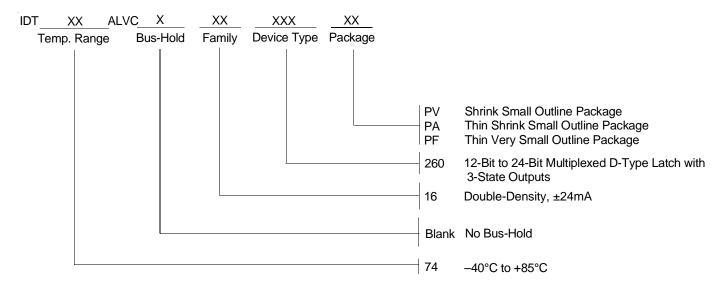
- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

Propagation Delay


Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


Set-up, Hold, and Release Times

Pulse Width

ALVC Link

ORDERING INFORMATION

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com

for Tech Support: logichelp@idt.com (408) 654-6459