DATA SHEET

UZZ9000 Sensor Conditioning Electronic

Product specification

FEATURES

- One chip fully integrated signal conditioning IC
- Accuracy better than 1° together with KMZ41 in 100° angle range
- Temperature range from -40 to $150^{\circ} \mathrm{C}$
- Adjustable angle range
- Adjustable zero point.

GENERAL DESCRIPTION

The UZZ9000 is an integrated circuit that combines two sinusoidal signals (sine and cosine) into one single linear output signal. When used in conjunction with the magnetoresistive sensor KMZ41 it provides a measurement system for angles up to 180°. The UZZ9000 can also be used for other applications in which an angle has to be calculated from a sine and a cosine signal. A typical application would be any kind of resolver application.
The two input signals are converted into the digital domain with two separate AD-converters. A CORDIC algorithm performs the inverse tangent transformation. Since today's applications typically require analog output signals (e.g. potentiometers), the resulting signal is transferred back to the analog domain.
The UZZ9000 enables the user to set both the angle range and the zero point offset. These ranges are set by external voltage dividers.

PINNING

SYMBOL	PIN	DESCRIPTION
$+\mathrm{V}_{\text {O2 }}$	1	sensor 2 positive differential input
$+\mathrm{V}_{\text {O1 }}$	2	sensor 1 positive differential input
$\mathrm{V}_{\text {DD2 }}$	3	digital supply voltage
$\mathrm{V}_{\text {SS }}$	4	digital ground
GND	5	analog ground
RST	6	reset of the digital part; note 1
TEST1	7	for production test; note 1
TEST2	8	note 2
DATA_CLK	9	trim-mode data-clock; note 1
SMODE	10	serial mode programmer; note 1
TEST3	11	note 2
$V_{\text {OUT }}$	12	output voltage
Var $^{V_{\text {offin }}}$	13	angle-range input set
OFFS2	14	offset input set
OFFS1	15	offset trimming input sensor 2
$V_{\text {DDA }}$	17	offset trimming input sensor 1
GND	18	analog supply voltage
TEST4	19	for production test; note 1
TEST5	20	for production test; note 1
$V_{\text {DD1 }}$	21	digital supply voltage
$T_{\text {out }}$	22	test output
$-V_{\text {O2 }}$	23	sensor 2 negative differential input
$-V_{\text {O1 }}$	24	sensor 1 negative differential input

Notes

1. Connected to ground.
2. Pin to be left unconnected.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {DDA }}$	supply voltage	note 1	4.5	5	5.5	V
$\mathrm{V}_{\text {DD1 }}$	supply voltage	note 1	4.5	5	5.5	V
$\mathrm{V}_{\text {DD2 }}$	supply voltage	note 1	4.5	5	5.5	V
I CCtot	total supply current		-	13	15	mA
A	angle range	in 10° steps with KMZ41	30	-	180	deg
A	accuracy	with ideal input signal; range $=100^{\circ}$	± 0.45	-	-	deg

Note

1. $V_{D D A}, V_{D D 1}$ and $V_{D D 2}$ must be connected to the same supply voltage.

Sensor Conditioning Electronic

UZZ9000

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {DDA }}$	supply voltage		-0.3	+6	V
$\mathrm{~V}_{\mathrm{DD} 1}$	supply voltage		-0.3	+6	V
$\mathrm{~V}_{\mathrm{DD} 2}$	supply voltage		-0.3	+6	V
$\mathrm{~V}_{\text {pin }}$	voltage at all pins	-0.3	$\mathrm{~V}_{\mathrm{DD}}$	V	
$\mathrm{T}_{\text {stg }}$	storage temperature		-55	+150	${ }^{\circ} \mathrm{C}$
T_{j}	operating temperature	125 to $150^{\circ} \mathrm{C}$; max 200 hours	-40	+150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
$R_{\text {th } j-a}$	thermal resistance from junction to ambient	80	K/W

ESD SENSITIVITY

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
ESD	ESD sensitivity	human body model	2	kV
		machine model	± 150	V

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=-40$ to $+150^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V ; typical characteristics for $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {DDA }}$	supply voltage		4.5	5	5.5	V
$\mathrm{V}_{\mathrm{DD} 1}$	supply voltage		4.5	5	5.5	V
$\mathrm{V}_{\mathrm{DD} 2}$	supply voltage		4.5	5	5.5	V
I_{DD}	supply current	without load	-	10	15	mA
$\left(+\mathrm{V}_{\mathrm{O}}\right)-\left(-\mathrm{V}_{\mathrm{O}}\right)$	differential input voltage	referred to $V_{\text {DD }}$	± 6.6	-	± 28	mV / V
	common mode range	referred to $V_{D D}$	490	-	510	mV / V
	lost magnet threshold	referred to $V_{\text {DD }}$	-	3	-	mV / V
$\mathrm{f}_{\text {ext }}$	external clock frequency	for trim interface	0.1	-	1	MHz
$\mathrm{f}_{\text {int }}$	internal clock frequency	$\mathrm{T}_{\mathrm{j}}=-40$ to $150{ }^{\circ} \mathrm{C}$	2.3	4	5.7	MHz
$\mathrm{C}_{\text {load }}$	output load		-	-	50	pF
		with series resistance $>300 \Omega$	-	-	200	nF
$\mathrm{V}_{\text {reset }}$	switching voltage threshold for power on/off	between falling and rising $V_{D D}$	2.8	-	4.5	V
	hysteresis		-	0.3	-	
$\mathrm{V}_{\text {out }}$	output voltage range for valid ranges	lower bound	5	-	6	\% V_{DD}
		upper bound	94	-	95	\% V VD
V_{d}	diagnostic area	for irregular input signal	0	-	4	\% V DD
			96	-	100	\% V ${ }_{\text {DD }}$
A	accuracy	with ideal input signal; range $=100^{\circ}$	± 0.45	-	-	degree
Res	resolution	range $=100^{\circ}$	0.1	-	-	degree
t_{on}	power up time		-	-	20	ms
t_{r}	response time	to 95\% of final value	-	0.7	1.2	ms
$\mathrm{V}_{\text {LM }}$	sensor voltage	lost magnet threshold	12	15	20	mV

FUNCTIONAL DESCRIPTION

The UZZ9000 is a mixed signal IC for angle measurement systems. The UZZ9000 has been designed for the double sensor KMZ41. It combines two analog signals (sine and cosine) into a linear output signal. The analog measurement signals on the IC input are converted to digital data by two ADC's. Each ADC is a Sigma-Delta modulator employing a 4th order continuous time architecture with an over-sampling ratio of 128 to achieve high resolution. The converter output is a digital bit-stream with an over-sampling frequency of typically 500 kHz . The bit-stream is fed into a decimation filter which
performs both low pass filtering and down-sampling. The IC has two input channels each of which has its own ADC and decimation filter. The two decimation filter outputs are 15-bit digital words at a lower frequency of typically 3.9 kHz which is the typical sampling frequency of the sensor system. The digital representations of the two signals are then used to calculate the current angle by the ALU. This calculation is carried out using the so-called CORDIC algorithm. The angle is represented by a 13-bit resolution. A DAC converts the digital signal back to the analog domain.

Fig. 1 Block diagram.

The following list gives a short description of the relevant block functions:

1. The ADC block contains two Sigma Delta AD converters, sensor offset correction circuitry and the circuitry required for the sensitivity and offset adjustment of the chip output voltage curve.
2. The decimation filter block comprises two digital low pass decimation filters convert the low resolution high speed bit stream output from the ADC's into a low speed digital word.
3. The ALU block derives an angle value from the two digital inputs using the CORDIC algorithm.
4. The DAC converts the output of the ALU block to an analog signal.
5. The CONTROL block provides the clock and the control signals for the chip.
6. The RESET block supplies a reset signal during power-up and power-down when the power supply is below a certain value.
7. The Oscillator generates the master clock.

Angle range selection

In order to accommodate varying applications, both the mechanical input angular range of the UZZ9000 and the zero point of the output curve are user programmable. This section describes how to select a desired mode. The output curve is adjusted by changing the angular range as shown in Fig.2. Without any zero point offset, the ramp-up starts at mechanical $0^{\circ}\left(\alpha 1=0^{\circ}\right)$. When using a KMZ41 sensor, the maximum angular range $\Delta \alpha$ is 0° to 180°. For the UZZ9000, smaller angular ranges can be set. In this case, $\alpha 2$ becomes smaller than 180° and the output curve is clipped at this position. The location of discontinuity X_{D} (change from lower to upper clipping area) depends on the adjusted range and can be calculated as follows:
$X_{D}=\Delta \alpha+\frac{180^{\circ}-\Delta \alpha}{2}$
In order to compensate for tolerances, the zero point of the output curve can be shifted by $\pm 5^{\circ}$ in steps of 0.5°. The effect of this measure is shown in Fig.3. Now $\alpha 1$ is no longer identical with mechanical 0°, but with the zero point shift $X_{\text {off. }}$ Consequently, the location of discontinuity X_{D} can be calculated as follows:
$\mathrm{X}_{\mathrm{D}}=\mathrm{X}_{\text {off }}+\Delta \alpha+\frac{180^{\circ}-\Delta \alpha}{2}$

When using MR sensors (KMZ41), the signal period is 0° to 180° as the signals are proportional to $\sin 2 \alpha$ and $\cos 2 \alpha$.

Fig. 2 Output curve for different angular ranges.

When using MR sensors (KMZ41), the signal period is 0° to 180° as the signals are proportional to $\sin 2 \alpha$ and $\cos 2 \alpha$.

Fig. 3 Output curve for different angular ranges including a zero point offset.

Angle range setting

To select one of 16 different angular ranges, an external voltage (see Table 1) must be applied to pin 13 of the UZZ9000 (Var). During the ICs initialisation phase, which directly follows power-on reset or an external reset, this voltage is read and then converted into the digital domain. The digital value is stored until the next reset state occurs. Consequently, the angular range cannot be changed during normal operation but is still fixed after initialisation phase. Note that the voltage at pin 13 must be ratiometric to $\mathrm{V}_{\text {DDA }}$ and also stable over temperature and lifetime. This is ensured, for instance, when providing this voltage via a (trimmable) resistor divider connected to $\mathrm{V}_{\text {DDA }}$, which is the analog supply of the UZZ9000. The following defines the \% value of the supply voltage $\mathrm{V}_{\text {DDA }}$ that must be supplied to pin 13 to select a certain range. When using the 30° angular range, a constant zero point offset of 15° is added. Consequently, when using the 30° range, the zero point offset can be programmed between 10° and 20° only (see Zero point offset setting).

Table 1 Definition of voltages to set UZZ9000 angular ranges

ANGULAR RANGE (${ }^{\circ}$)	MIN. (\%)	NOM. (\%)	MAX. (\%)	UNIT (\%)
0 to 30	33.47	33.73	33.99	$\mathrm{V}_{\text {DDA }}$
0 to 40	35.69	35.95	36.21	$\mathrm{V}_{\text {DDA }}$
0 to 50	37.91	38.17	38.43	$V_{\text {DDA }}$
0 to 60	40.14	40.40	40.66	$V_{\text {DDA }}$
0 to 70	42.36	42.62	42.88	$\mathrm{V}_{\text {DDA }}$
0 to 80	44.58	44.84	45.10	V DDA
0 to 90	46.80	47.06	47.32	$\mathrm{V}_{\text {DDA }}$
0 to 100	49.02	49.28	49.54	$\mathrm{V}_{\text {DDA }}$
0 to 110	51.25	51.51	51.77	$V_{\text {DDA }}$
0 to 120	53.47	53.73	53.99	$V_{\text {DDA }}$
0 to 130	55.69	55.95	56.21	$\mathrm{V}_{\text {DDA }}$
0 to 140	57.91	58.17	58.43	$V_{\text {DDA }}$
0 to 150	60.13	60.39	60.65	$V_{\text {DDA }}$
0 to 160	62.36	62.62	62.88	$\mathrm{V}_{\text {DDA }}$
0 to 170	64.58	64.84	65.10	$V_{\text {DDA }}$
0 to 180	66.80	67.06	67.32	$V_{\text {DDA }}$

Zero point offset setting

To adjust the zero point offset or to set it to 0°, an external voltage has to be applied to the UZZ9000 at pin 14
(VOFFIN). The function is similar to that described
previously. After reset the voltage is read, converted into the digital domain and then stored until another reset state occurs. Consequently, the zero point offset cannot be adjusted without a reset. It is recommended to use a resistor divider connected to $\mathrm{V}_{\text {DDA }}$ to generate this voltage. Table 2 defines the allowed voltage ranges as a percentage of the supply $V_{\text {DDA }}$.

Table 2 Definition of voltages to set a certain zero point offset

ZERO POINT OFFSET $\left({ }^{\circ}\right)$	MIN. (\%)	NOM. $(\%)$	MAX. $(\%)$	UNIT $(\%)$
-5	33.47	33.73	33.99	$\mathrm{~V}_{\text {DDA }}$
-4.5°	35.14	35.40	35.66	$\mathrm{~V}_{\text {DDA }}$
-4°	36.80	37.06	37.32	$\mathrm{~V}_{\text {DDA }}$
-3.5°	38.47	38.73	38.99	$\mathrm{~V}_{\text {DDA }}$
-3°	40.13	40.39	40.65	$\mathrm{~V}_{\text {DDA }}$
-2.5°	41.80	42.06	42.32	$\mathrm{~V}_{\text {DDA }}$
-2°	43.47	43.73	43.99	$\mathrm{~V}_{\text {DDA }}$
-1.5°	45.13	45.39	45.65	$\mathrm{~V}_{\text {DDA }}$
-1°	46.80	47.06	47.32	$\mathrm{~V}_{\text {DDA }}$
-0.5°	48.60	48.72	48.98	$\mathrm{~V}_{\text {DDA }}$
0°	50.13	50.39	50.65	$\mathrm{~V}_{\text {DDA }}$
0.5°	51.80	52.06	52.32	$\mathrm{~V}_{\text {DDA }}$
1°	53.46	53.72	53.98	$\mathrm{~V}_{\text {DDA }}$
1.5°	64.58	55.39	55.65	$\mathrm{~V}_{\text {DDA }}$
2°	56.79	57.05	57.31	$\mathrm{~V}_{\text {DDA }}$
2.5°	58.46	58.72	58.98	$\mathrm{~V}_{\text {DDA }}$
3°	60.13	60.39	60.65	$\mathrm{~V}_{\text {DDA }}$
3.5°	61.79	62.05	62.31	$\mathrm{~V}_{\text {DDA }}$
4°	63.46	63.72	63.98	$\mathrm{~V}_{\text {DDA }}$
4.5°	65.12	65.38	65.64	$\mathrm{~V}_{\text {DDA }}$
5°	66.79	67.05	67.31	$\mathrm{~V}_{\text {DDA }}$

Offset trimming

To achieve a linear output characteristic, it is necessary to adapt the offsets of the two input signals to the input stage of the UZZ9000. For this reason a sensor offset
cancellation procedure has been implemented in the UZZ9000 which is started by sending a special serial data protocol to the UZZ9000. This trimming procedure is required for both input signals.

Sensor Conditioning Electronic

Trim interface

The serial interface used to switch the UZZ9000 into trim mode consists of the two terminals SMODE (pin 10) and DATA_CLK (pin 9). The structure of this protocol is shown in Fig. 4.
All signal levels at DATA_CLK and SMODE must be selected according to the requirements listed in Table 3. The following points must be taken into account with regard to the asynchronous protocol.
The protocol starts with a falling edge at the SMODE,
which must occur at a high DATA_CLK level. The following five bits are used to code the message sent to the UZZ9000. They are transferred via the SMODE and are sampled with the rising edge of the DATA_CLK. During the fifth high level output of DATA_CLK (counted from the start condition onwards), a rising edge must appear at the SMODE and the DATA_CLK follows this with one more change to low level in order to successfully complete the protocol.

Fig. 4 Protocol used to set UZZ9000 into trim mode.

Table 3 Definition of the trim interface signals

PARAMETER	MIN.	NOM.	MAX.	UNIT
UZZ9000 supply voltage	4.5	5	5.5	V
low level of DATA_CLK, SMODE	0	-	5	\% V_{DD}
high level of DATA_CLK, SMODE	95	-	100	$\% \mathrm{~V}_{\text {D }}$
rise and fall time of DATA_CLK and SMODE signal edges (10 to $90 \% \mathrm{~V}_{\mathrm{DD}}$) and (90 to $10 \% \mathrm{~V}_{\mathrm{DD}}$)	8	-	-	ns
DATA_CLK frequency	0.1	-	1	MHz

How to enter the trim mode

The status bits to be transmitted to the UZZ9000 are shown in Table 4. Note that a complete protocol has to be sent before normal operation can be resumed. The trim mode can also be exited by resetting the device. After entering one of the trim modes and provided there is a dynamic input signal, a square wave output is visible at the terminal Tout (pin 22).

Table 4 Programming of trim modes

MODE		STATUS BITS				
		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	
enter trim mode for sensor input channel 1	0	0	0	1	0	
enter trim mode for sensor input channel 2	0	0	1	0	0	
leave trim mode for either input channel	0	0	0	0	0	

Reset

In addition to the external reset pin (pin 6), the UZZ9001 provides an internal power-up/ power-down reset logic which continuously monitors the supply voltage. When the supply voltage increases and reaches a safe level, reset becomes inactive and the device starts initialization. When the supply voltage exceeds the safe voltage level, the device is reset immediately. This internal reset logic can be over-ridden by the external pin RES (pin 6) in all modes and at any time. The reset pin RES (pin 6) is active when in the high position. It is internally pulled to ground and therefore need not be connected if the function is not required.

Diagnostic

The UZZ9000 provides powerful diagnostics features that allow the user to recognize certain failures of the device or system. A failure will occur when the output voltage $\mathrm{V}_{\text {OUT }}$ either rises above or falls below the normal operation range. Either one of the diagnostic areas is reached during any of the following conditions

1. Short circuit between $\mathrm{V}_{\text {OUT }}$ and $\operatorname{GND}(\mathrm{R}<1 \Omega)$.
2. Short circuit between $V_{\text {OUT }}$ and $V_{D D}(R<1 \Omega)$.
3. Disconnection of $V_{D D}$ when the load is pulled down.
4. Disconnection of GND when the load is pulled up.
5. Invalid input signal from the sensor, e.g. Magnet Lost. This failure is assumed when the offset corrected input signal of sensor 1 and sensor 2 is below $\pm 15 \mathrm{mV}$.
The internal pull-up and pull-down resistors in the output buffer block ensure that $\mathrm{V}_{\text {OUT }}$ will be pulled to one of the power supplies when the other supply is disconnected so $V_{\text {Out }}$ reaches the diagnostic region even when there is no output load. If the external load is a pull-down resistor, then
the device enters into the diagnostic area if V_{DD} is disconnected, but not if V_{SS} is disconnected. Similarly, if the load is a pull-up resistor, then the device will enter the diagnostic area if $\mathrm{V}_{S S}$ is disconnected, but not if $\mathrm{V}_{D D}$ is disconnected. It is not necessary to connect an output load to the UZZ9000. After recovering from short circuit to ground or supply voltage, the chip returns undamaged to the normal operation mode. There is no time limitation regarding short circuit of $\mathrm{V}_{\text {OUT }}$.

Measurement dynamics

The UZZ9000 includes an on-chip RC Oscillator that generates the clock for the whole device. Consequently, no external clock supply is required for the measurement system. The nominal clock frequency of the on-chip oscillator is 4 MHz at room temperature. It varies with temperature change. At $-40^{\circ} \mathrm{C}$ the clock frequency may decrease to 2.3 MHz . At higher temperatures however, a frequency up to 5.7 MHz may be reached. This influences the dynamics of measurements. From an application point of view, two different effects have to be distinguished: The system delay, which means how long it takes until a changed input signal is recognized at the output, and the measurement update rate. The system delay is mainly caused by the settling time of the low pass decimation filter, which depends on the maximum frequency content (shape) of the input signals and the clock frequency. The following maximum values can be expected for the entire system delay. The measurement update rate, however, is directly related to the oscillator frequency. At room temperature, a new value is available every 0.26 ms . When taking the entire temperature range into account, update rates between 0.45 and 0.18 ms are possible. (see Table 5).

Table 5 System delay and update rates of the UZZ9000

PARAMETER	MIN.	TYP.	MAX.	UNIT
system delay (time elapsed until 95\% of the final value is reached)				
max. signal frequency $<200 \mathrm{MHz}$	-	-	0.6	ms
transients (step response)	-	-	1.2	ms
measurement update rate				
$-40^{\circ} \mathrm{C}$	0.45	-	-	ms
$25^{\circ} \mathrm{C}$ (room temperature)	-	0.26	-	ms
$150^{\circ} \mathrm{C}$	-	-	0.18	ms

PACKAGE OUTLINE

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT137-1	$075 E 05$	MS-013			$-97-05-22$	

DATA SHEET STATUS

DATA SHEET STATUS	PRODUCT STATUS	DEFINITIONS ${ }^{(1)}$
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

Note

1. Please consult the most recently issued data sheet before initiating or completing a design.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

NOTES

NOTES

NOTES

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 29704 8141, Fax. +61 297048139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160101 1248, Fax. +431601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 17220 0733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359268 9211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800234 7381, Fax. +1 8009430087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +453329 3333, Fax. +4533293905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615 800, Fax. +35896158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, J. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 217940040 ext. 2501, Fax. +62 217940080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23-20052 MONZA (MI),
Tel. +39 039203 6838, Fax +39 0392036800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +8133740 5130, Fax. +81 337405057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800234 7381, Fax +9-5 8009430087
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +47 22748341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: AI.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 225710 000, Fax. +48 225710001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11471 5401, Fax. +27 114715398
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93301 6312, Fax. +34 933014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 85985 2000, Fax. +46 859852745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +4114882741 Fax. +4114883263
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 22134 2451, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260, Tel. +66 2361 7910, Fax. +66 23983447
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 2881260 Umraniye, ISTANBUL, Tel. +90 216522 1500, Fax. +90 2165221813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208730 5000, Fax. +44 2087548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800234 7381, Fax. +18009430087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 113341 299, Fax.+381 113342553

For all other countries apply to: Philips Semiconductors,
Internet: http://www.semiconductors.philips.com
Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,
The Netherlands, Fax. +31 402724825

© Philips Electronics N.V. 2000

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

