16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90520 Series

MB90522/523/F523/V520

■ DESCRIPTION

The MB90520 series is a general-purpose 16-bit microcontroller developed and designed by Fujitsu for process control applications in consumer products that require high-speed real-time processing.
The instruction set of $\mathrm{F}^{2} \mathrm{MC}$-16LX CPU core inherits AT architecture of $\mathrm{F}^{2} \mathrm{MC}^{* 1}$ family with additional instruction sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word data.

The MB90520 series has peripheral resources of 8/10-bit A/D converter, a 8-bit D/A converter, UART (SCI), extended I/O serial interfaces 0 and 1, $8 / 16$-bit up/down counter/timers 0 and $1,8 / 16$-bit PPG timers 0 and 1, I/O timer (16 -bit free-run timers 1 and 2 , input captures 0 and 1 (ICU), output compares 0 and 1 (OCU)), LCD controller/driver.
*1: F²MC stands for FUJITSU Flexible Microcontroller.

- PACKAGE

MB90520 Series

FEATURES

- Clock

Embedded PLL clock multiplication circuit
Operating clock (PLL clock) can be selected from divided-by-2 of oscillation or one to four times the oscillation (at oscillation of $4 \mathrm{MHz}, 3 \mathrm{MHz}$ to 16 MHz).
The system can be operated by an oscillation sub-clock (rated at 32.768 kHz).
Minimum instruction execution time: 62.5 ns (at oscillation of 4 MHz , four times the PLL clock, operation at Vcc of 5.0 V)

- Maximum memory space

16 Mbytes

- Instruction set optimized for controller applications

Ri65data types (bit, byte, word, long word)
Rich addressing mode (23 types)
Enhanced signed multiplication/division instruction and RETI instruction functions
Enhanced precision calculation realized by the 32-bit accumulator

- Instruction set designed for high level language (C) and multi-task operations

Adoption of system stack pointer
Enhanced pointer indirect instructions
Barrel shift instructions

- Program patch function (for two address pointers)
- Enhanced execution speed

4-byte instruction queue

- Enhanced interrupt function

8 levels, 34 factors

- Automatic data transmission function independent of CPU operation

Extended intelligent l/O service function (EI²OS): Up to 16 channels

- Embedded ROM size and types

Mask ROM: 64 kbytes/128 kbytes
Flash ROM: 256 kbytes
Embedded RAM size: 4 kbytes/10 kbytes (mass-produced products)
4 kbytes (flash memory)
6 kbytes (evaluation chip)

- Low-power consumption (stand-by) mode

Sleep mode (mode in which CPU operating clock is stopped)
Stop mode (mode in which oscillation is stopped)
CPU intermittent operation mode
Hardware stand-by mode
Clock mode (mode in which other than sub-oscillation and timebase timer are stopped)

- Process

CMOS technology

- I/O port

General-purpose I/O ports (CMOS): 53 ports
General-purpose I/O ports (via pull-up resistors): 24 ports
General-purpose I/O ports (open-drain): 8 ports
Total: 85 ports
(Continued)

MB90520 Series

(Continued)

- Timer

Timebase timer/watchdog timer: 1 channel
$8 / 16$-bit PPG timers $0,1: 8$-bit $\times 2$ channels or 16 -bit $\times 1$ channel
16-bit re-load timers $0,1: 2$ channels

- 16-bit I/O timer

16-bit free-run timers 1, 2: 2 channels
Input captures 0,1 (ICU): Generates an interrupt request by latching a 16-bit free-run timer counter value upon detection of an edge input to the pin.
Output compares $0,1(\mathrm{OCU})$: Generates an interrupt request and reverse the output level upon detection of a match between the 16-bit free-run timer counter value and the compare setting value.
8/16-bit up/down counter/timers 0,1 : 1 channel (8 -bit $\times 2$ channels)

- Extended I/O serial interfaces $0,1: 1$ channel
- UART (SCI)

With full-duplex double buffer
Clock asynchronized or clock synchronized transmission can be selectively used.

- DTP/external interrupt circuit (8 channels)

A module for starting extended intelligent I/O service (EI2OS) and generating an external interrupt triggered by an external input.

- Wake-up interrupt

Receives external interrupt requests and generates an interrupt request upon an " L " level input.

- Delayed interrupt generation module

Generates an interrupt request for switching tasks.

- 8/10-bit A/D converter (8 channels)

8/10-bit resolution can be selectively used.
Starting by an external trigger input.
Conversion time: 16.0μ s or slower

- 8-bit D/A converter (based on the R-2R system)

8-bit resolution: 2 channels (independent)
Setup time: $12.5 \mu \mathrm{~s}$

- Clock timer: 1 channel
- LCD controller/driver

A common driver and a segment driver that can directly drive the LCD (liquid crystal display) panel

- Clock output function

Note: Do not set external bus mode for the MB90520 series because it cannot be operated in this mode.

PRODUCT LINEUP

Item		MB90522	MB90523	MB90F523	MB90V520
Classification		Mass-produced products (mask ROM products)		Mass-produced product (flash ROM product)	Evaluation product
ROM size		64 kbytes 128 kbytes			None
RAM size		6 kbytes			
CPU functions		The number of instructions: 340 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits			
		Minimum ex (at machin	$\begin{aligned} & \text { ime: } 62.5 \mathrm{~ns} \\ & \text { f } 16 \mathrm{MHz} \text {) } \end{aligned}$	Minimum execution time: 100 ns (at machine clock of 10 MHz)	Minimum execution time: 62.5 ns (at machine clock of 16 MHz)
		Interrupt processing time: $1.5 \mu \mathrm{~s}$ (at machine clock of 16 MHz , minimum value)			
Ports		General-purpose I/O ports (CMOS output): 53 General-purpose I/O ports (via pull-up resistor): 24 General-purpose I/O ports (N-ch open-drain output): 8 Total: 85			
UART (SCI)		Clock synchronized transmission (62.5 kbps to 1 Mbps) Clock asynchronized transmission (1202 bps to 9615 bps) Transmission can be performed by bi-directional serial transmission or by master/slave connection.			
8/10-bit A/D converter		Conversion precision: 8/10-bit can be selectively used. Number of inputs: 8 One-shot conversion mode (converts selected channel only once) Scan conversion mode (converts two or more successive channels and can program up to 8 channels.) Continuous conversion mode (converts selected channel continuously) Stop conversion mode (converts selected channel and stop operation repeatedly)			
8/16-bit PPG timers 0,1		Number of channels: 1 (8 -bit $\times 2$ channels) PPG operation of 8 -bit or 16 -bit A pulse wave of given intervals and given duty ratios can be output. Pulse interval: 62.5 ns to $1 \mu \mathrm{~s}$ (at oscillation of 4 MHz , machine clock of 16 MHz)			
8/16-bit up/down counter/ timers 0, 1		Number of channels: 1 (8 -bit $\times 2$ channels) Event input: 6 channels 8-bit up/down counter/timer used: 2 channels it re-load/compare function supported: 1 channel			
16-bit I/O timer	16-bit freerun timers 1, 2	Number of channels: 2 Overflow interrupts			

(Continued)
(Continued)

Part number Item		MB90522	MB90523	MB90F523	MB90V520
$\begin{aligned} & 16 \text {-bit } \\ & \text { I/O timer } \end{aligned}$	Output compares 0, 1 (OCU)	Number of channels: 8 Pin input factor: A match signal of compare register			
	$\begin{aligned} & \text { Input captures } \\ & 0,1 \text { (ICU) } \end{aligned}$	Number of channels: 2 Rewriting a register value upon a pin input (rising, falling, or both edges)			
DTP/external interrupt circuit		Number of inputs: 8 Started by a rising edge, a falling edge, an "H" level input, or an "L" level input. External interrupt circuit or extended intelligent I/O service (EI ${ }^{2} \mathrm{OS}$) can be used.			
Wake-up intrrupt		Number of inputs: 8 Started by an "L" level input.			
Delayed interrupt generation module		An interrupt generation module for switching tasks Used in real-time operating systems.			
Extended I/O serial interfaces 0,1		Clock synchronized transmission (3125 bps to 1 Mbps) LSB first/MSB first			
Timebase timer		18-bit counter Interrupt interval: $1.024 \mathrm{~ms}, 4.096 \mathrm{~ms}, 16.384 \mathrm{~ms}, 131.072 \mathrm{~ms}$ (at oscillation of 4 MHz)			
8-bit D/A converter		8 -bit resolution Number of channels: 2 channels Based on the R-2R system			
LCD controller/driver		Number of common output pins: 4 Number of segment output pins: 32 Number of power supply pins for LCD drive: 4 RAM for LCD indication: 16 bytes Booster for LCD drive: Internal Split resistor for LCD drive: Internal			
Watchdog timer		Reset generation interval: $3.58 \mathrm{~ms}, 14.33 \mathrm{~ms}, 57.23 \mathrm{~ms}, 458.75 \mathrm{~ms}$ (at oscillation of 4 MHz , minimum value)			
Low-power consumption (stand-by) mode		Sleep/stop/CPU intermittent operation/clock timer/hardware stand-by			
Process		CMOS			
Power supply voltage for operation*		3.0 V to 5.5 V		4.0 V to 5.5 V	3.0 V to 5.5 V

[^0]
MB90520 Series

PACKAGE AND CORRESPONDING PRODUCTS

Package	MB90522	MB90523	MB90F523
FPT-120P-M05	\bigcirc	\bigcirc	\bigcirc
FPT-120P-M13	\bigcirc	\bigcirc	\bigcirc

: Available \times : Not available
Note: For more information about each package, see section "■ Package Dimensions."

DIFFERENCES AMONG PRODUCTS

Memory Size

In evaluation with an evaluation chips, note the difference between the evaluation chip and the chip actually used. The following items must be taken into consideration.

- The MB90V520 does not have an internal ROM, however, operations equivalent to chips with an internal ROM can be evaluated by using a dedicated development tool, enabling selection of ROM size by settings of the development tool.
- In the MB90V520, images from FF4000н to FFFFFFF are mapped to bank 00, and FE0000н to FF3FFFн to mapped to bank FE and FF only. (This setting can be changed by configuring the deveolpment tool.)
- In the MB90522, images from FF4000н to FFFFFFн are mapped to bank 00, and FF0000н to FF3FFFн to bank FF only.
- In the MB90523/F523, images from FF4000н to FFFFFFH are mapped to bank 00, and FE0000н to FF3FFF to bank FE and bank FF.

MB90520 Series

PIN ASSIGNMENT

(Top view)

(FPT-120P-M05)
(FPT-120P-M13)

MB90520 Series

PIN DESCRIPTION

Pin no. LQFP-120*1 QFP-120*2	Pin name	$\begin{aligned} & \text { Circuit } \\ & \text { type } \end{aligned}$	Function
$\begin{aligned} & \hline 92, \\ & 93 \end{aligned}$	$\begin{aligned} & \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$	A	This is a high-speed crystal oscillator pin.
$\begin{aligned} & 74, \\ & 73 \end{aligned}$	$\begin{aligned} & \mathrm{XOA}, \\ & \mathrm{X} 1 \mathrm{~A} \end{aligned}$	B	This is a low-speed crystal oscillator pin.
89 to 87	MD0 to MD2	C	This is an input pin for selecting operation modes. Connect directly to V cc or V ss.
90	$\overline{\text { RST }}$	C	This is external reset request signal.
86	HST	C	This is a hardware stand-by input pin.
95 to 101	P00 to P06	D	This is a general-purpose I/O port. This function can be set by the port 0 input pull-up resistor setup register (RDRO) for input. For output, however, this function is invalid.
	INT0 to INT6		This is a request input pin of the DTP/external interrupt circuit ch. 0 to ch. 6 .
102	P07	D	This is a general-purpose I/O port. This function can be set by the port 0 input pull-up resistor setup register (RDRO) for input. For output, however, this function is invalid.
103 to 110	P10 to 17	D	This is a general-purpose I/O port. This function can be set by the port 1 input pull-up resistor setup register (RDR1) for input. For output, however, this function is invalid.
	WI0 to WI7		This is an I/O pin for wake-up interrupts.
$\begin{aligned} & 111, \\ & 112, \\ & 113, \\ & 114 \end{aligned}$	$\begin{aligned} & \mathrm{P} 20, \\ & \mathrm{P} 21, \\ & \mathrm{P} 22, \\ & \mathrm{P} 23 \end{aligned}$	E	This is a general-purpose I/O port.
	IC00, IC01, IC10, IC11		This is a trigger input pin for input capture (ICU) 0 and 1. Since this input is used as required for input capture 0 and 1 (ICU) ch.0, ch. 01 , ch. 10 and ch. 11 input operation, output by other functions must be suspended except for intentional operation.
115	P24	E	This is a general-purpose I/O port.
	AINO		This port can be used as count clock A input for 8/16-bit up/down counter/timer 0.
116	P25	E	This is a general-purpose I/O port.
	BINO		This port can be used as count clock B input for 8/16-bit up/down counter/timer 0 .

*1: FPT-120P-M05
(Continued)
*2: FPT-120P-M13

Pin no.	Pin name	Circuit type	Function
117	P26	F	This is a general-purpose I/O port.
	ZINO		This port can be used as count clock Z input for 8/16-bit up/down counter/timer 0.
	INT7		This is a request input pin of the DTP/external interrupt circuit ch.7.
118	P27	F	This is a general-purpose I/O port.
	$\overline{\text { ADTG }}$		This is external trigger input pin of the $8 / 10$-bit A/D converter. Since this input is used as required for $8 / 10$-bit A/D converter input operation, output by other functions must be suspended except for intentional operation.
120	P30	E	This is a general-purpose I/O port.
1	P31	E	This is a general-purpose I/O port.
	CKOT		This is a clock monitor function output pin. This function is vaild when clock monitor output is enabled.
2	P32	E	This is a general-purpose I/O port. This function becomes vaild when waveform output from the OUTO is disabled.
	OUTO		This is an event output pins for output compare 0 (OCU) ch.0. This function is valid when output for each channel is enabled.
3	P33	E	This is a general-purpose I/O port. This function becomes vaild when waveform output from the OUT1 is disabled.
	OUT1		This is an event output pins for output compare 0 (OCU) ch.1. This function is valid when output for each channel is enabled.
4	P34	E	This is a general-purpose I/O port. This function becomes vaild when waveform output from the OUT2 is disabled.
	OUT2		This is an event output pins for output compare 0 (OCU) ch.2. This function is valid when output for each channel is enabled.
5	P35	E	This is a general-purpose I/O port. This function becomes vaild when waveform output from the OUT3 is disabled.
	OUT3		This is an event output pins for output compare 0 (OCU) ch.3. This function is valid when output for each channel is enabled.
6	P36	E	This is a general-purpose I/O port. This function becomes vaild when waveform output from the PG00 is disabled.
	PG00		This is an output pin of $8 / 16$-bit PPG timer 0. This function becomes valid when waveform output from PG00 is enabled.

*1: FPT-120P-M05
(Continued)
*2: FPT-120P-M13

$\begin{gathered} \text { Pin no. } \\ \text { LQFP-120*1 } \\ \text { QFP-120*2 } \end{gathered}$	Pin name	Circuit type	Function
7	P37	E	This is a general-purpose I/O port. This function becomes vaild when waveform output from the PG01 is disabled.
	PG01		This is an output pin of $8 / 16$-bit PPG timer 0 . This function becomes valid when waveform output from PG01 is enabled.
$\begin{aligned} & 9 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{P} 40, \\ & \mathrm{P} 41 \end{aligned}$	D	This is a general-purpose I/O port. This function becomes vaild when waveform output from the PG10 and PG11 are disabled. This function can be set by the pull-up resistor setup register (RDR4) for input. For output, however, this function is invalid.
	$\begin{aligned} & \text { PG10, } \\ & \text { PG11 } \end{aligned}$		This is an output pin of $8 / 16$-bit PPG timer 1 . This function becomes valid when waveform outputs from PG10 and PG11 are enabled.
11	P42	D	This is a general-purpose I/O port. This function can be set by the pull-up resistor setup register (RDR4) for input. For output, however, this function is invalid.
	SIN0		This is a serial data input pin of UART (SCI). Because this input is used as required when UART (SCI) is performing input operations, and it is necessary to stop outputs by other functions unless such outputs are made intentionally. When using other output functions as well, disable output during SIN operation.
12	P43	D	This is a general-purpose I/O port. This function can be set by the pull-up resistor setup register (RDR4) for input. For output, however, this function is invalid.
	SOT2		This is a serial data output pin of UART (SCI). This function becomes valid when serial data output from UART (SCI) is enabled.
13	P44	D	This is a general-purpose I/O port. This function can be set by the pull-up resistor setup register (RDR4) for input. For output, however, this function is invalid.
	SCK0		This is a serial clock I/O pin of UART (SCI). This function becomes valid when serial clock output from UART (SCI) is enabled.
14	P45	D	This is a general-purpose I/O port. This function can be set by the port 4 input pull-up resistor setup register (RDR4) for input. For output, however, this function is invalid.
	SIN1		This is a data input pin for extended I/O serial interface 0. Since this input is used as required for serial data input operation, output by other functions must be suspended except for intentional operation. When using other output functions as well, disable output during SIN operation.

*1: FPT-120P-M05
(Continued)
*2: FPT-120P-M13

Pin no.	Pin name	Circuittype	Function
$\begin{aligned} & \text { LQFP-120*1 } \\ & \text { QFP-120*2 } \end{aligned}$			
15	P46	E	This is a general-purpose I/O port. This function can be set by the port 4 input pull-up resistor setup register (RDR4) for input. For output, however, this function is invalid.
	SOT1		This is a data output pin for extended I/O serial interface 0 . This function becomes valid when serial data output from SOT1 is enabled.
16	P47	D	This is a general-purpose I/O port. This function can be set by the port 4 input pull-up resistor setup register (RDR4) for input. For output, however, this function is invalid.
	SCK1		This is a serial clock I/O pin for extended I/O serial interface 0. This function becomes valid when serial clock output from SCK1 is enabled.
35	P50	D	This is a general-purpose I/O port.
	SIN2		This is a data input pin for extended I/O serial interface 1. Since this input is used as required for serial data input operation, output by other functions must be suspended except for intentional operation.
	AIN1		This port can be used as count A input for 8/16-bit up/down counter/timer 1.
36	P51	D	This is a general-purpose l/O port.
	SOT2		This function becomes valid when serial data output from SOT2 is enabled.
	BIN1		This port can be used as count B input for 8/16-bit up/down counter/timer 1.
37	P52	D	This is a general-purpose I/O port.
	SCK2		This is a serial clock I/O pin for extended I/O serial interface 1. This function becomes valid when serial clock output from serial SCK2 is enabled.
	ZIN1		This port can be used as control clock Z input for 8/16-bit up/down counter/timer 1.
$\begin{aligned} & 40, \\ & 41 \end{aligned}$	$\begin{aligned} & \hline \text { P53, } \\ & \text { P54 } \end{aligned}$	I	This is a general-purpose I/O port.
	$\begin{aligned} & \text { DA0, } \\ & \text { DA1 } \end{aligned}$		These are analog signal output pins for 8 -bit D/A converter ch. 0 and ch.1.
46 to 53	P60 to P67	K	This is a general-purpose I/O port. The input function become valid when the analog input enable register (ADER) is set to select a port.
	AN0 to AN7		These are analog input pins of the 8/10-bit A/D converter. This function is valid when the analog input enable register (ADER) is enabled.

*1: FPT-120P-M05
(Continued)
*2: FPT-120P-M13

MB90520 Series

Pin no.	Pin name	$\begin{aligned} & \text { Circuit } \\ & \text { type } \end{aligned}$	Function
$\begin{aligned} & \text { LQFP-120*1 } \\ & \text { QFP-120* } \end{aligned}$			
$\begin{aligned} & 55, \\ & 57 \end{aligned}$	$\begin{aligned} & \hline \text { P70, } \\ & \text { P72 } \end{aligned}$	E	This is a general-purpose I/O port.
	$\begin{array}{\|l\|} \hline \text { TIO, } \\ \text { TII } \end{array}$		These are event input pins for 16 -bit re-load timers 0 and 1. Since this input is used as required for 16 -bit re-load timers 0 and 1 operation, output by other functions must be suspended except for intentional operation.
	OUT4, OUT6		These are event output pins for output compare 1 (OCU) ch. 4 and ch.6. This function is valid when output for each channel is enabled.
$\begin{aligned} & 56, \\ & 58 \end{aligned}$	$\begin{aligned} & \text { P71, } \\ & \text { P73 } \end{aligned}$	E	This is a general-purpose I/O port. This function is valid with TO0 and TO1 output disabled.
	$\begin{aligned} & \hline \text { TO0, } \\ & \text { TO1 } \end{aligned}$		These are output pins for 16 -bit re-load timers 0 and 1 . This function is valid with TO0 and TO1 output is enabled.
	OUT5, OUT7		These are event output pins for output compare 1 (OCU) ch. 5 and ch.7. This function is valid when output for each channel is enabled.
59 to 62	P74 to P77	L	This is a general-purpose I/O port. This function is valid with port output specified for the LCD controller/driver control register.
	COM to COM3		These are common pins for the LCD controller/driver. This function is valid with common output specified for the LCD controller/driver control register.
64 to 71	P80 to P87	L	This is a general-purpose I/O port. This function is valid with port output specified for the LCD controller/driver control register.
	SEG16 to SEG23		These are segment outputs for the LCD controller/driver. This function is valid with common output specified for the LCD controller/driver control register.
$\begin{gathered} 72, \\ 75 \text { to } 81 \end{gathered}$	P90, P91 to P97	M	This is a general-purpose I/O port. The maximum lo can be 10 mA . This function is valid with port output specified for the LCD controller/driver control register.
	$\begin{aligned} & \text { SEG24, } \\ & \text { SEG25 to SEG31 } \end{aligned}$		These are ports for the LCD controller/driver. This function is valid with common output specified for the LCD controller/driver control register.
17 to 24	SEG00 to SEG07	F	These are pins dedicated to LCD segments 00 to 07 for the LCD controller/driver.
25 to 32	PA0 to PA7	L	This is a general-purpose I/O port. This function is valid with port output specified for the LCD controller/driver control register.
	SEG08 to SEG15		These are pins for LCD segments 08 to 15 for the LCD controller/ driver. Units of four ports or segments can be selected by the internal register in the LCD controller.

*1: FPT-120P-M05
(Continued)
*2: FPT-120P-M13
(Continued)

Pin no.	Pin name	Circuit type	Function
$\begin{aligned} & \text { LQFP-120*1 } \\ & \text { QFP-120 } \end{aligned}$			
34	C	G	This is a capacitance pin for power supply stabilization. Connect an external ceramic capacitor rated at about $0.1 \mu \mathrm{~F}$. This capacitor is not, however, required for the M90F523 (flash product).
82 to 85	V0 to V3	N	This is a pin for the reference power supply for the LCD controller/ driver.
$\begin{aligned} & 8, \\ & 54, \\ & 94 \end{aligned}$	Vcc	Power supply	This is power supply (5.0 V) input pin to the digital circuit.
$\begin{gathered} 33, \\ 63, \\ 91 \\ 119 \end{gathered}$	Vss	Power supply	This provides the GND level (0.0 V) input pin for the digital circuit.
42	AV cc	H	This is power supply to the analog circuit. Make sure to turn on/turn off this power supply with a voltage exceeding AV cc applied to Vcc .
43	AVRH	J	This is a reference voltage input to the analog circuit. Make sure to turn on/turn off this power supply with a voltage exceeding AVRH applied to AVcc.
44	AVRL	H	This is a reference voltage input to the analog circuit.
45	$\mathrm{AV}_{\text {ss }}$	H	This is a GND level of the analog circuit.
38	DVcc	H	This is the Vref input pin for the D/A converter. The voltage to be applied must not exceed V cc.
39	DVss	H	This is the GND level pin for the D/A converter. The potential must be the same as $V_{\text {ss }}$.

*1: FPT-120P-M05
*2: FPT-120P-M13

MB90520 Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- High-speed oscillation feedback resistor approx. $1 \mathrm{M} \Omega$
B		- Low-speed oscillation feedback resistor approx. $1 \mathrm{M} \Omega$
C	$\square \longrightarrow \mathrm{M}_{\mathrm{M}}^{\mathrm{R}}-\mathrm{O}$ - Hysteresis input	- Hysteresis input rated at about $50 \mathrm{k} \Omega$
D		- Hysteresis input can be set the input pullup resistor CMOS level output - Rated at about $50 \mathrm{k} \Omega$ - Provided with a standby control function for input interruption

(Continued)

Type	Circuit	Remarks
E		- CMOS hysteresis input/output - CMOS level output - Provided with a standby control function for input interruption
F		- Pins dedicated to segment output
G		- C pin output (Pin for capacitor connection) N.C. pin for the MB90F523
H		- Analog power input protector
I		- CMOS hysteresis input/output - Pin for analog output/CMOS output (During analog output, CMOS output is not produced.) (Analog output has priority over CMOS output: DAE = 1) - Provided with a standby control function for input interruption

(Continued)

Type	Circuit	Remarks
J		- Input pin for ref+ power for the A/D converter Provided with a power protection
K		- Hysteresis input/analog input - CMOS output - Provided with a standby control for input interruption
L		- Hysteresis input/output - Segment input - Standby control to cut off the input is available in segment input operation
M		- Hysteresis input - N-ch open-drain output (High current for LCD drive) - Standby control to cut off the input is available in segment input operation
N		- Reference power supply pin for the LCD controller

HANDLING DEVICES

1. Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below V ss is applied to input or output pins or a voltage exceeding the rating is applied across $V_{c c}$ and $V_{s s}$.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage ($\mathrm{AVcc}, \mathrm{AVRH}, \mathrm{DV} \mathrm{cc}$) and analog input voltages not exceed the digital voltage (Vcc).

And also make sure the voltage applied to the LCD power supply pin (V3 to V0) doesn't exceed the power supply voltage (Vcc).

2. Connection of Unused Pins

Leaving unused pins open may result in abnormal operations. Clamp the pin level by connecting it to a pull-up or a pull-down resistor.

3. Notes on Using External Clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.

- Using external clock

4. Power Supply Pins

In products with multiple Vcc or Vss pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However, connect the pins external power and ground lines to lower the electro-magnetic emission level and abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect V_{cc} and $\mathrm{V}_{\text {ss }}$ pins via lowest impedance to power lines.
It is recommended to provide a bypass capacitor of around $0.1 \mu \mathrm{~F}$ between V_{cc} and $\mathrm{V}_{\text {ss }}$ pin near the device.

5. Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an grand area for stabilizing the operation.

MB90520 Series

6. Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply, D/A converter power supply (AVcc, AVRH, AVRL, DVcc, DVss) and analog inputs (ANO to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that AVRH and DVcc not exceed $A V$ cc (turning on/off the analog and digital supplies simultaneously is acceptable).

7. Connection of Unused Pins of A/D Converter

Connect unused pins of A / D converter and those of D / A converter to $\mathrm{AVcc}=\mathrm{DV} \mathrm{cc}=\mathrm{V} \mathrm{cc}, \mathrm{AVss}=\mathrm{AVRH}=\mathrm{AVRL}$ $=\mathrm{V}$ ss.
8. N.C. Pin

The N.C. (internally connected) pin must be opened for use.

9. Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 or more $\mu \mathrm{s}$ (0.2 V to 2.7 V).
10. Use of SEG/COM Pins for the LCD Controller/Driver as Ports

In MB90520 series, pins SEG08 to SEG31, and COM0 to COM3 can also be used general-purpose ports. The electrical standard is such that pins SEG08 to SEG23, and COMO to COM3 have the same ratings as the CMOS output port, while pins SEG24 to SEG31 have the same ratings as the open-drain type.
11. Initialization

In the device, there are internal registers which is initialized only by a power-on reset. To initialize these registers turning on the power again.
12. Interrupt Recovery from the Standby State
"H" level request must be an input request when using an external interrupt to recover from the standby state. In this case "L" level request may occur malfunction.

BLOCK DIAGRAM

Notes: One 16-bit free-run timer 1 is supported although two free-run timers are seemingly supported.
*1: The clock control circuit comprises a watchdog timer, a timebase timer, and a power consumption controller.
*2: A register for setting a pull-up resistor is supported.
*3: This is a high-current port for LCD drive.
*4: A register for setting a pull-up resistor is supported. A signal in the CMOS level is input and output.
*5: Also used for LCD output. With this port used as is, N -ch open-drain output develops. A register for setting a pull-up resistor.

MB90520 Series

MEMORY MAP

Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16 -bit of bank FF and the lower 16 -bit of bank 00 is assigned to the same address, enabling reference of the table on the ROM without stating "far".

For example, if an attempt has been made to access 00C000н, the contents of the ROM at FFCOOOH are accessed actually. Since the ROM area of the FF bank exceeds 48 k bytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000н to FFFFFFH looks, therefore, as if it were the image for 00400 н to 00 FFFFн. Thus, it is recommended that the ROM data table be stored in the area of FF4000 to FFFFFFFH

MB90520 Series

F²MC-16LX CPU PROGRAMMING MODEL

- Dedicated registers

MB90520 Series

- General-purpose registers

- Processor status (PS)

I/O MAP

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000000н	PDR0	Port 0 data register	R/W	Port 0	XXXXXXXXв
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXX
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXXв
000003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXX
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXXв
000005н	PDR5	Port 5 data register	R/W	Port 5	$---X X X X X$ в
000006н	PDR6	Port 6 data register	R/W	Port 6	XXXXXXXXв
000007н	PDR7	Port 7 data register	R/W	Port 7	XXXXXXXX
000008н	PDR8	Port 8 data register	R/W	Port 8	XXXXXXXXв
000009н	PDR9	Port 9 data register	R/W	Port 9	XXXXXXXX
00000Ан	PDRA	Port A data register	R/W	Port A	XXXXXXXX
00000Вн	LCDCMR	Port 7/COM pin selection register	R/W	Port 7, LCD controller/driver	----0000в
$00000 \mathrm{CH}_{\mathrm{H}}$	PDRC	Port C data register	R/W	Port C	XXXXXXXXв
$00000 \mathrm{CH}_{\text {H }}$	OCP4	OCU compare register ch. 4	R/W	16-bit I/O timer (output compare 1 (OCU) section)	XXXXXXXX
00000的					XXXXXXXX
00000Ен	(Disabled)				
00000Fн	EIFR	Wake-up interrupt flag register	R/W	Wake-up interrupt	-------0 в
000010н	DDR0	Port 0 direction register	R/W	Port 0	00000000 в
000011н	DDR1	Port 1 direction register	R/W	Port 1	00000000 в
000012н	DDR2	Port 2 direction register	R/W	Port 2	00000000 в
000013н	DDR3	Port 3 direction register	R/W	Port 3	00000000 в
000014н	DDR4	Port 4 direction register	R/W	Port 4	00000000 в
000015 ${ }_{\text {н }}$	DDR5	Port 5 direction register	R/W	Port 5	---00000в
000016н	DDR6	Port 6 direction register	R/W	Port 6	00000000 в
000017 ${ }_{\text {H }}$	DDR7	Port 7 direction register	R/W	Port 7	00000000 в
000018н	DDR8	Port 8 direction register	R/W	Port 8	00000000 в
000019н	DDR9	Port 9 direction register	R/W	Port 9	00000000 в
00001 Ан	DDRA	Port A direction register	R/W	Port A	00000000 в
00001Вн	ADER	Analog input enable register	R/W	Port 6, A/Dconverter	11111111 в
00001С ${ }^{\text {¢ }}$	OCP5	OCU compare register ch. 5	R/W	16-bit I/O timer (output compare 1 (OCU) section)	XXXXXXXXв
00001D					XXXXXXXXв
00001Ен	(Disabled)				
00001F	EICR	Wake-up interrupt enable register	W	Wake-up interrupt	00000000 в

(Continued)

MB90520 Series

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000020н	SMR	Serial mode register	R/W	UART (SCI)	00000000 в
000021н	SCR	Serial control register	R/W		00000100 в
000022н	$\begin{aligned} & \text { SIDR/ } \\ & \text { SODR } \end{aligned}$	Serial input data register/ serial output data register	R/W		ХХХХХХХХв
000023н	SSR	Serial status register	R/W		00001-00в
000024н	SMCSLO	Serial mode control lower status register 0	R/W	Extended I/O serial interface 0	----0000в
000025	SMCSH0	Serial mode control upper status register 0	R/W		00000010 в
000026н	SDR0	Serial data register 0	R/W		ХХХХХХХХв
000027н	CDCR	Communications prescaler control register	R/W	Communications prescaler control register	$0---1111$ в
000028н	SMCSL1	Serial mode control lower status register 1	R/W	Extended I/O serial interface 1	----0000в
000029н	SMCSH1	Serial mode control upper status register 1	R/W		00000010 в
00002Ан	SDR1	Serial data register 1	R/W		XXXXXXXXв
00002Вн	(Disabled)				
00002С ${ }_{\text {н }}$	OCS45	OCU control status register ch. 45	R/W	16-bit I/O timer (output compare 1 (OCU) section)	0000--00в
00002D					----0000в
00002Ен	OCS67	OCU control status register ch. 67	R/W		0000--00в
00002Fн					----0000в
000030н	ENIR	DTP/interrupt enable register	R/W	DTP/external interrupt circuit	00000000 в
000031н	EIRR	DTP/interrupt factor register	R/W		XXXXXXXXв
000032н	ELVR	Request level setting register	R/W		00000000 в
000033н					00000000 в
000034н	OCP6	OCU compare register ch. 6	R/W	16-bit I/O timer (output compare 1 (OCU) section)	XXXXXXXXв
000035 ${ }_{\text {H }}$					XXXXXXXX
000036н	ADCS1	A/D control status register lower digits	R/W	8/10-bit A/D converter	00000000 в
000037 ${ }_{\text {H }}$	ADCS2	A/D control status register upper digits	R/W		00000000 в
000038н	ADCR1	A/D data register lower digits	R		XXXXXXXXв
000039н	ADCR2	A/D data register upper digits	R/W		00001-XXв
00003Ан	DADR0	D/A converter data register ch. 0	R/W	8/10-bit D/A converter	XXXXXXXXв
00003Вн	DADR1	D/A converter data register ch. 1	R/W		XXXXXXXX
00003Сн	DACR0	D/A control register 0	R/W		-------0в
00003D	DACR1	D/A control register 1	R/W		-------0 в

(Continued)

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
00003Eн	CLKR	Clock output enable register	R/W	Clock monitor function	----0000 в
00003FH	(Disabled)				
000040н	PRLLO	PPG0 re-load register L	R/W	8/16-bit PPG timer 0, 1	XXXXXXXX
000041н	PRLH0	PPG0 re-load register H	R/W		XXXXXXXX ${ }_{\text {в }}$
000042н	PRLL1	PPG1 re-load register L	R/W		XXXXXXXX ${ }_{\text {в }}$
000043н	PRLH1	PPG1 re-load register H	R/W		XXXXXXXXв
000044	PPGC0	PPG0 operating mode control register	R/W		0-000--1 в
000045	PPGC1	PPG1 operating mode control register	R/W		0×000001 в
000046н	$\begin{aligned} & \text { PPGOE0/ } \\ & \text { PPGOE1 } \end{aligned}$	PPG0 and 1 output control registers	R/W		00000000 в
000047 ${ }^{\text {H }}$	(Disabled)				
000048н	TMCSR0	Timer control status register ch. 0	R/W	16-bit re-load timer 0	00000000 в
000049н					----0000в
00004Ан	TMR0/ TMRLR0	16-bit timer register ch.0/ 16-bit re-load register ch. 0	R/W		XXXXXXXXв
00004Вн					Х \times XXXXXXв
00004Сн	TMCSR1	Timer control status register ch. 1	R/W	16-bit re-load timer 1	00000000 в
00004Dн					---0000 в
00004Eн	TMR1/ TMRLR1	16-bit timer register ch.1/ 16-bit re-load register ch. 1	R/W		XXXXXXXXв
00004FH					XXXXXXXX ${ }_{\text {в }}$
000050н	IPCP0	ICU data register ch. 0	R	16-bit I/O timer (input compare 0, 1 (ICU) section)	XXXXXXXX ${ }_{\text {в }}$
000051н					XXXXXXXX
000052н	IPCP1	ICU data register ch. 1	R		XXXXXXXX
000053н					XXXXXXXXв
000054н	ICS01	ICU control status register	R/W		00000000 в
000055	(Disabled)				
000056	TCDT1	Free-run timer data register 1	R/W	16-bit I/O timer (16-bit free-run timer 1 section)	00000000 в
000057 ${ }^{\text {H }}$					00000000 в
000058н	TCCS1	Free-run timer control status register 1	R/W		00000000 в
000059н	(Disabled)				

(Continued)

MB90520 Series

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
00005Ан	OCP0	OCU compare register ch. 0	R/W	16-bit I/O timer (output compare 0 (OCU) section)	XXXXXXXXв
00005Вн					XXXXXXXXв
00005С	OCP1	OCU compare register ch. 1	R/W		XXXXXXXX
00005D					XXXXXXXXB
00005Ен	OCP2	OCU compare register ch. 2	R/W		XXXXXXXX
00005Fн					XXXXXXXX
000060н	OCP3	OCU compare register ch. 3	R/W		XXXXXXXX
000061н					XXXXXXXXв
000062н	OCS01	OCU control status register ch. 01	R/W		0000--00в
000063н					---00000в
000064н	OCS23	OCU control status register ch. 23	R/W		0000--00в
000065н					---00000в
000066н	TCDT2	Free-run timer data register 2	R/W	16-bit I/O timer (16-bit free-run timer 2 section)	00000000 в
000067н					00000000 в
000068н	TCCS2	Free-run timer control status register 2	R/W		00000000 в
000069н	(Disabled)				
00006Ан	LCR0	LCDC control registers 0 and 1	R/W	LCD controller/ driver	00010000 в
00006Вн	LCR1		R/W		00000000 в
00006Сн	OCP7	OCU compare register ch. 7	R/W	16-bit I/O timer (output compare 1 (OCU) section)	XXXXXXXXв
00006D					XXXXXXXXв
00006Ен	(Disabled)				
00006Fн	ROMM	ROM mirroring function selection register	W	ROM mirroring function selection module	-------1 в
$\begin{gathered} \hline 000070_{\mathrm{H}} \\ \text { to } \\ 00007 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	VRAM	RAM for LCD indication	R/W	LCD controller/ driver	ХХХХХХХХв
000080н	UDCR0	Up/down count register 0	R	8/16-bit up/down counter/timer 0,1	00000000 в
000081н	UDCR1	Up/down count register 1	R		00000000 в
000082н	RCR0	Re-load compare register 0	W		00000000 в
000083н	RCR1	Re-load compare register 1	W		00000000 в
000084н	CSR0	Counter status register 0	R/W		00000000 в
000085н	(Reserved area) ${ }^{* 3}$				
000086н	CCRLO	Counter control register 0	R/W	8/16-bit up/down counter/timer 0,1	-0000000 в
000087н	CCRH0				00000000 в
000088н	CSR1	Counter status register 1	R/W		00000000 в

(Continued)

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000089н	(Reserved area)*3				
00008Ан	CCRL1	Counter control register 1	R/W	8/16-bit up/down counter/timer 0,1	-0000000 в
00008Bн	CCRH1				-0000000 в
00008Сн	RDR0	Port 0 input pull-up resistor setup register	R/W	Port 0	00000000 в
00008D ${ }_{\text {н }}$	RDR1	Port 1 input pull-up resistor setup register	R/W	Port 1	00000000 в
00008Ен	RDR4	Port 4 input pull-up resistor setup register	R/W	Port 4	00000000 в
$\begin{aligned} & 00008 \mathrm{FH}_{\mathrm{H}} \\ & \text { to } \\ & 00009 \mathrm{D}_{\mathrm{H}} \end{aligned}$	(Area used by the system)*3				
00009Ен	PACSR	Program address detection control status register	R/W	Address match detection function	00000000 в
00009Fн	DIRR	Delayed interrupt factor generation/ cancellation register	R/W	Delayed interrupt generation module	-------0 в
0000AOH	LPMCR	Low-power consumption mode control register	R/W!	Low-power consumption	00011000 в
0000A1н	CKSCR	Clock select register	R/W	(stand-by) mode	11111100 в
$\begin{aligned} & \text { 0000А2н } \\ & \text { to } \\ & 0000 \mathrm{~A} 7 \mathrm{H} \end{aligned}$	(Disabled)				
0000A8н	WDTC	Watchdog timer control register	R/W	Watchdog timer	XXXXXXXXв
0000А9н	TBTC	Timebase timer control register	R/W	Timebase timer	1--00100в
0000AAн	WTC	Clock timer control register	R/W	Clock timer	1×000000 в
$\begin{aligned} & \text { 0000АВн } \\ & \text { to } \\ & 0000 \text { ADн } \end{aligned}$	(Disabled)				
0000АЕн	FMCS	Flash control register	R/W	Flash interface	$1--00100$ в
0000AFH	(Disabled)				

(Continued)
(Continued)

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
0000B0н	ICR00	Interrupt control register 00	R/W	Interrupt controller	00000111 в
0000B1н	ICR01	Interrupt control register 01	R/W		00000111 в
0000В2н	ICR02	Interrupt control register 02	R/W		00000111 в
0000В3н	ICR03	Interrupt control register 03	R/W		00000111 в
0000B4н	ICR04	Interrupt control register 04	R/W		00000111 в
0000B5 ${ }_{\text {н }}$	ICR05	Interrupt control register 05	R/W		00000111 в
0000B6н	ICR06	Interrupt control register 06	R/W		00000111 в
0000B7н	ICR07	Interrupt control register 07	R/W		00000111 в
0000B8н	ICR08	Interrupt control register 08	R/W		00000111 в
0000B9н	ICR09	Interrupt control register 09	R/W		00000111 в
0000ВАн	ICR10	Interrupt control register 10	R/W		00000111 в
0000ВВ ${ }_{\text {н }}$	ICR11	Interrupt control register 11	R/W		00000111 в
0000BCH	ICR12	Interrupt control register 12	R/W		00000111 в
0000BD	ICR13	Interrupt control register 13	R/W		00000111 в
0000ВЕн	ICR14	Interrupt control register 14	R/W		00000111 в
0000BF ${ }^{\text {H }}$	ICR15	Interrupt control register 15	R/W		00000111 в
$\begin{aligned} & \text { 0000COH } \\ & \text { to } \\ & 0000 \mathrm{FF} \end{aligned}$	(External area)*1				
	$($ RAM area)*2				
$\begin{array}{\|c\|} \hline 00 \# \# \# \# н \\ \text { to } \\ \text { to } \\ 001 \text { FEFH } \end{array}$	(Reserved area)*3				
001FFOH	PADR0	Program address detection register 0	R/W	Program patch processing	XXXXXXXXв
001FF1н		Program address detection register 1	R/W		XXXXXXXXв
001FF2н		Program address detection register 2	R/W		ХXXXXXXXB
001FF3н	PADR1	Program address detection register 3	R/W		XXXXXXXXв
001FF4н		Program address detection register 4	R/W		ХXXXXXXXв
001FF5 ${ }_{\text {H }}$		Program address detection register 5	R/W		XXXXXXXXв
$\begin{aligned} & \text { 001FF6н } \\ & \text { to } \\ & 001 \text { FFFH } \end{aligned}$	(Reserved area)*3				

Descriptions for read/write
R/W: Readable and writable
R: Read only
W: Write only

MB90520 Series

Descriptions for initial value
0 : The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
X : The initial value of this bit is indeterminate.

- : This bit is not used. The initial value is indeterminate.
*1: This area is the only external access area having an address of 0000FFH or lower. An access operation to this area is handled as that to external I/O area.
*2: For details of the RAM area, see the memory map.
*3: The reserved area is basically disabled because it is used in the system.
*4: Area used by the system is the area set by the resistor for evaluating tool.
Notes: - For bits that is initialized by an reset operation, the initial value set by the reset operation is listed as an initial value. Note that the values are different from reading results.
For LPMCR/CKSCR/WDTC, there are cases where initialization is performed or not performed, depending on the types of the reset. However initial value for resets that initializes the value are listed.
- The addresses following 0000FFн are reserved. No external bus access signal is generated.
- Boundary \#\#\#\#н between the RAM area and the reserved area varies with the product model.
- Channels 0 to 3 of the OCU compare register use 16-bit free-run timer 2, while channels 4 to 7 of the OCU compare register use 16 -bit free-run timer 1. 16 -bit free-run timer 1 is also used by input captures (ICU) 0 and 1.

MB90520 Series

INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

Interrupt source	$\mathrm{El}^{2} \mathrm{OS}$ support	Interrupt vector		Interrupt control register		Priority
		Number	Address	ICR	Address	
Reset	\times	\# 08	FFFFDCH	-	-	High
INT9 instruction	\times	\# 09	FFFFD8н	-	-	4
Exception	\times	\# 10	FFFFD4н	-	-	
8/10-bit A/D converter	\bigcirc	\# 11	FFFFD0н	ICR00	0000B0н	
Timebase timer	\times	\# 12	$\mathrm{FFFFCCH}_{\text {H }}$			
DTP0/DTP1 (external interrupt 0/ external interrupt 1)	\bigcirc	\# 13	FFFFC8H	ICR01	0000B1H	
16-bit free-run timer 1 overflow	\times	\# 14	FFFFC4H			
Extended I/O serial interface 0	\bigcirc	\# 15	FFFFCOH	ICR02	0000B2н	
Wake-up interrupt	\times	\# 16	FFFFBCH			
Extended I/O serial interface 1	\bigcirc	\# 17	FFFFB8	ICR03	0000B3н	
DTP2/DTP3 (external interrupt 2/ external interrupt 3)	\bigcirc	\# 18	FFFFB4			
8/16-bit PPG timer 0 counter borrow	\times	\# 19	FFFFB0н	ICR04	0000B4H	
DTP4/DTP5 (external interrupt 4/ external interrupt 5)	\bigcirc	\# 20	FFFFACH			
8/16-bit up/down counter/timer 0 compare match	\bigcirc	\# 21	FFFFA0н	ICR05	0000B5	
8/16-bit up/down counter/timer 0 overflow/inversion	\bigcirc	\# 22	FFFFA4н			
8/16-bit PPG timer 1 counter borrow	\times	\# 23	FFFFA0н	ICR06	0000B6н	
DTP6/DTP7 (external interrupt 6/ external interrupt 7)	\bigcirc	\# 24	FFFF9C ${ }_{\text {H }}$			
Output compare 1 (OCU) ch.4/ch. 5 match	\bigcirc	\# 25	FFFF98 ${ }_{\text {H }}$	ICR07	0000B7 ${ }^{\text {H }}$	
Clock prescaler	\times	\# 26	FFFF94 ${ }_{\text {H }}$			
Output compare 1 (OCU) ch.6/ch. 7 match	\bigcirc	\# 27	FFFF90н	ICR08	0000B8H	
16-bit free-run timer 2 overflow	\times	\# 28	FFFF8C ${ }_{\text {H }}$			
8/16-bit up/down counter/timer 1 compare match	\bigcirc	\# 29	FFFF88H	ICR09	0000B9н	V
8/16-bit up/down counter/timer 1 overflow/inversion	\bigcirc	\# 30	FFFF84			
Input capture 0 (ICU) include	\bigcirc	\# 31	FFFF80 ${ }_{\text {H }}$	ICR10	0000ВАн	
Input capture 1 (ICU) include	\bigcirc	\# 32	FFFF7CH	ICR10	0000ВАн	Low

(Continued)
(Continued)

Interrupt source	El2OS support	Interrupt vector		Interrupt control register		Priority
		Number	Address	ICR	Address	
Output compare 0 (OCU) ch. 0 match	\bigcirc	\# 33	FFFF78 ${ }_{\text {+ }}$	ICR11	0000BBн	High
Output compare 0 (OCU) ch. 1 match	\bigcirc	\# 34	FFFF74			\wedge
Output compare 0 (OCU) ch. 2 match	\bigcirc	\# 35	FFFF70H	ICR12	0000BCH	
Output compare 0 (OCU) ch. 3 match	\times	\# 36	FFFF66 ${ }_{\text {H }}$			
UART (SCI) reception complete	\bigcirc	\# 37	FFFF68 ${ }^{\text {H }}$	ICR13	0000BD	
16-bit re-load timer 0	\bigcirc	\# 38	FFFF64 ${ }_{\text {H }}$			
UART (SCI) transmission complete	-	\# 39	FFFF60 ${ }_{\text {H }}$	ICR14	0000ВЕн	\checkmark
16-bit re-load timer 1	\bigcirc	\# 40	FFFF5CH			
Reserved	\times	\# 41	FFFF584	ICR15	0000BFн	
Delayed interrupt generation module	\times	\# 42	FFFF54			Low

\bigcirc : Can be used
\times : Can not be used
© : Can be used. With El2 ${ }^{2}$ OS stop function.

MB90520 Series

PERIPHERALS

1. I/O Port

(1) Input/Output Port

Port 0 through 8, A are general-purpose I/O ports having a combined function as a resource input. The input output ports function as general-purpose I/O port only in the single-chip mode.

- Operation as output port

The pin is configured as an output port by setting the corresponding bit of the DDR register to "1".
Writing data to PDR register when the port is configured as output, the data is retained in the output latch in the PDR and directly output to the pin.
The value of the pin (the same value retained in the output latch of PDR) can be read out by reading the PDR register.

Note: When a read-modify-write type instruction (e.g. bit set instruction) is performed to the port data register, the destination bit of the operation is set to the specified value, not affecting the bits configured by the DDR register for output, however, values of bits configured by the DDR register as inputs are changed because input values to the pins are written into the output latch. To avoid this situation, configure the pins by the DDR register as output after writing output data to the PDR register when configuring the bit used as input as outputs.

- Operation as input port

The pin is configured as an input by setting the corresponding bit of the DDR register to "0".
When the pin is configured as an input, the output buffer is turned-off and the pin is put into a high-impedance status.

When a data is written into the PDR register, the data is retained in the output latch of the PDR, but pin outputs are unaffected.

Reading the PDR register reads out the pin level ("0" or " 1 ").

(2) Register Configuration

- Port 0 data register (PDRO)

Address		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000000H	(PDR1)	P07	P06	P05	P04	P03	P02	P01	P00	XXXXXXXX

- Port 1 data register (PDR1)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
000001H	P17	P16	P15	P14	P13	P12	P11	P10	(PDRO)	XXXXXXXX
	R/W									

- Port 2 data register (PDR2)

- Port 3 data register (PDR3)

- Port 4 data register (PDR4)

- Port 5 data register (PDR5)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	
000005н	-	-	-	P54	P53	P52	P51	P50	(PDR4)
	-	-	-	R/W	R/W	R/W	R/W	R/W	

- Port 6 data register (PDR6)

Initial value XXXXXXXXв

- Port 7 data register (PDR7)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit $7 \ldots \ldots \ldots \ldots$. \ldots bit 0	Initial value
000007 ${ }^{\text {H }}$	P77	P76	P75	P74	P73	P72	P71	P70	(PDR6)	
	R/W									

- Port 8 data register (PDR8)

- Port 9 data register (PDR9)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	Initial value
000009H	P97	P96	P95	P94	P93	P92	P91	P90	(PDR8)	XXXXXXXX ${ }_{\text {в }}$
	R/W									

MB90520 Series

- Port A data register (PDRA)

- Port 0 direction register (DDR0)

Address		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
000010н	(DDR1)	D07	D06	D05	D04	D03	D02	D01	D00
		R/W							

- Port 1 direction register (DDR1)

- Port 2 direction register (DDR2)

Address		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
000012н	(DDR3)	D27	D26	D25	D24	D23	D22	D21	D20
		R/W							

Initial value 00000000 в

- Port 3 direction register (DDR3)
Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit $7 \ldots \ldots \ldots \ldots$ bit 0

- Port 4 direction register (DDR4)

Address		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
000014H	(DDR5)	D47	D46	D45	D44	D43	D42	D41	D40
		R/W							

Initial value 00000000 в

- Port 5 direction register (DDR5)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8		Initial value
000015H	-	-	-	D54	D53	D52	D51	D50	(DDR4)	-- 00000 в
	R/W									

- Port 6 direction register (DDR6)

Address b		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
000016н	(DDR7)	D67	D66	D65	D64	D63	D62	D61	D60
		R/W							

- Port 7 direction register (DDR7)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		Initial value
000017H	D77	D76	D75	D74	D73	D72	D71	D70		(DDR6)	00000000 в
	R/W										

- Port 8 direction register (DDR8)

MB90520 Series

(Continued)

- Port 9 direction register (DDR9)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit $7 \times \ldots \ldots \ldots$ bit 0	Initial value
000019н	D97	D96	D95	D94	D93	D92	D91	D90	(DDR8)	00000000 в
	R/W									

- Port A direction register (DDRA)

Address		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00001 Ан	(ADER)	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DAO	00000000 в
		R/W								

- Port 0 input pull-up resistor setup register (RDRO)

Address bit $15 \ldots \ldots \ldots$ bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

00008 C	(RDR1)	RD07	RD06	RD05	RD04	RD03	RD02	RD01
	RD00							

Initial value 00000000 в

- Port 1 input pull-up resistor setup register (RDR1)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		Initial value
00008D ${ }_{\text {H }}$	RD17	RD16	RD15	RD14	RD13	RD12	RD11	RD10		(RDR0)	00000000 в
	R/W										

- Port 4 input pull-up resistor setup register (RDR4)

Address		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00008Ен	(Disabled)	RD47	RD46	RD45	RD44	RD43	RD42	RD41	RD40	00000000 в
		R/W								

- Analog input enable register (ADER)

Address bit 15 bit 14 bit
00001 B $_{\text {H }}$

| bit 15 |
| :--- | bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit

\qquad Initial value
$\begin{array}{llllllll}\text { R/W } & R / W & R / W & R / W & R / W & R / W & R / W & R / W\end{array}$

- Port 7/COM pin selection register (LCDCMR)

R/W : Readable and writable
x : Unused
X : Indeterminate

MB90520 Series

(3) Block Diagram

- Input/output port

Standby control: Stop, timebase timer mode and SPL=1, or hardware standby mode

- Input pull-up resistor setup register (RDR)

Standby control: Stop, timebase timer mode and SPL=1

- Analog input enable register (ADER)

Standby control: Stop, timebase timer mode and SPL=1

MB90520 Series

2. Timebase Timer

The timebase timer is a 18-bit free-run counter (timebase counter) for counting up in synchronization to the internal count clock (divided-by-2 of oscillation) with an interval timer function for selecting an interval time from four types of $2^{12} / \mathrm{HCLK}, 2^{14} / \mathrm{HCLK}, 2^{16} / \mathrm{HCLK}$, and $2^{19} / \mathrm{HCLK}$.

The timebase timer also has a function for supplying operating clocks for the timer output for the oscillation stabilization time or the watchdog timer etc.
(1) Register Configuration

- Timebase timer control register (TBTC)

Address	bit 15	bit 1	bit 1	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	Initial value
0000A9н	RESV	-	-	TBIE	TBOF	TBR	TBC1	TBC0		(WDTC)	1--00000в
	-	-	-	R/W	R/W	R/W	R/W	R/W			

R/W: Readable and writable

- : Unused

RESV: Reserved bit
(2) Block Diagram

3. Watchdog Timer

The watchdog timer is a 2-bit counter operating with an output of the timebase timer and resets the CPU when the counter is not cleared for a preset period of time.
(1) Register Configuration

- Watchdog timer control register (WDTC)

Address b		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	$\begin{aligned} & \text { Initial value } \\ & \text { XXXXXXX } \end{aligned}$
0000A8н	(TBTC)	PONR	STBR	WRST	ERST	SRST	WTE	WT1	WTO	
		R	R	R	R	R	W	W	W	

R: Read only
W: Write only
X : Indeterminate

(2) Block Diagram

HCLK: Oscillation clock

MB90520 Series

4. 8/16-bit PPG Timer 0, 1

The 8/16-bit PPG timer is a 2-CH re-load timer module for outputting pulse having given frequencies/duty ratios.
The two modules performs the following operation by combining functions.

- 8-bit PPG output 2-CH independent operation mode

This is a mode for operating independent 2-CH 8-bit PPG timer, in which PPG0 and PPG1 pins correspond to outputs from PPG0 and PPG1 respectively.

- 16-bit PPG timer output operation mode

In this mode, PPG0 and PPG1 are combined to be operated as a 1 -CH $8 / 16$-bit PPG timer 0 and 1 operating as a 16 -bit timer. Because PPG0 and PPG1 outputs are reversed by an underflow from PPG1 outputting the same output pulses from PPG0 and PPG1 pins.

- $8+8$-bit PPG timer output operation mode

In this mode, PPG0 is operated as an 8-bit communications pre-scaler, in which an underflow output of PPG0 is used as a clock source for PPG1. A toggle output of PPG0 and PPG output of PPG1 are output from PPG0 and PPG1 respectively.

- PPG output operation

A pulse wave with any period/duty ratio is output. The module can also be used as a D/A converter with an external add-on circuit.

(1) Register Configuration

- PPGO operating mode control register (PPGCO)

- PPG1 operating mode control register (PPGC1)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	
000045	PEN1	-	PE10	PIE1	PUF1	MD1	MD0	RESV	(PPGC0)
	R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	

Initial value 0X000001в

- PPG0 output control register (PPGOEO)

Address bit 15

Initial value 00000000 в

- PPG1 output control register (PPGOE1)

Ad		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
000046н	(Disabled)	PCS2	PCS1	PCS0	PCM2	PCM1	PCM0	PE11	PE01
		R/W							

- PPGO re-load register H (PRLHO)

- PPG1 re-load register H (PRLH1)

- PPG0 re-load register L (PRLLO)

- PPG1 re-load register L (PRLL1)

[^1]
MB90520 Series

(2) Block Diagram

- Block diagram of 8/16-bit PPG timer 0

* : Interrupt number

HCLK: Oscillation clock
ϕ : Machine clock frequency

- Block diagram of 8/16-bit PPG timer 1

MB90520 Series

5. 16-bit Re-load Timer 0, 1 (With an Event Count Function)

The 16-bit re-load timer has an internal clock mode for counting down in synchronization to three types of internal clocks and an event count mode for counting down detecting a given edge of the pulse input to the external bus pin, and either of the two functions can be selectively used.

For this timer, an "underflow" is defined as the timing of transition from the counter value of "0000н" to "FFFFr". According to this definition, an underflow occurs after [re-load register setting value +1] counts.

In operaring the counter, the re-load mode for repeating counting operation after re-loading a counter value after an underflow or the one-shot mode for stopping the counting operation after an underflow can be selectively used.

Because the timer can generate an interrupt upon an underflow, the timer conforms to the extended intelligent I/O service (El²OS).

The MB90520 series has 2 channels of 16 -bit re-load timers.
(1) Register Configuration

- Timer control status register upper digits ch.0, ch. 1 (TMCSR0, TMCSR1 : H)

TMCSR0: 000049н	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit $7 \ldots \ldots \ldots$ bit 0	Initial value
	-	-	-	-	CSL1	CSLO	MOD2	MOD1		--0000
	-	-	-	-	R/W	R/W	R/W	R/W		

- Timer control status register lower digits ch.0, ch. 1 (TMCSR0, TMCSR1 : L)

- 16-bit re-load register upper and lower digits ch.0, ch. 1 (TMRL0, TMRL1)

(2)
 Block Diagram

MB90520 Series

6. 16-bit I/O Timer

The 16 -bit I/O timer module consists of two 16 -bit free-run timer, two input capture circuits (ICU), and eight output comparators (OCU). This module allows two independent waveforms to be output on the basis of the 16-bit free-run timer. Input pulse width and external clock periods can, therefore, be measured.

- Block diagram

MB90520 Series

(1) 16-bit Free-run Timer 1, 2

The 16-bit free-run timer consists of a 16-bit up counter, a control register, and a communications prescaler register. The value output from the timer counter is used as basic timer (base timer) for input capture (ICU) and output compare (OCU).

- A counter operation clock can be selected from four internal clocks ($\phi / 4, \phi / 16, \phi / 32$ and $\phi / 64$).
- An interrupt can be generated by overflow of counter value or compare match with OCU compare register 0 and 4. (Compare match requires mode setup.)
- The counter value can be initialized to " $0000 _$" by a reset, software clear or compare match with OCU compare register 0 and 4.

- Register configuration

- Free-run timer data register 1, 2 (TCDT1, TCDT2)

Address
TCDT1: 000056 000057н
TCDT2 : 000066 000067H
bit 15bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

T 15	T 14	T 13	T 12	T 11	T 10	T 9	T 8	T 7	T 6	T 5	T 4	T 3	T 2	T 1	T 0

- Free-run timer control status register 1, 2 (TCCS1, TCCS2)

Address
TCCS1: 000058н
TCCS2 : 000068н

bit $15 \ldots \ldots \ldots$. . . bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
(Disabled)	RESV	IVF	IVFE	STOP	MODE	CLR	CLK1	CLKO
	R/W	R/W	R/W	R/W	R/W	R/W R/W		R/W

Initial value
00000000 в 00000000 в

R/W: Readable and writable
RESV: Reserved bit

- Block diagram

MB90520 Series

(2) Input Capture 0, 1 (ICU)

The input capture (ICU) generates an interrupt request to the CPU simultaneously with a storing operation of current counter value of the 16-bit free-run timer to the ICU data register (IPCP) upon an input of a trigger edge to the external pin.

There are two sets (two channels) of the input capture external pins and ICU data registers, enabling measurements of maximum of four events.

- The input capture has two sets of external input pins (INO, IN1) and ICU registers (IPCP), enabling measurements of maximum of four events.
- A trigger edge direction can be selected from rising/falling/both edges.
- The input capture can be set to generate an interrupt request at the storage timing of the counter value of the 16-bit free-run timer to the ICU data register (IPCP).
- The input compare conforms to the extended intelligent I/O service (EI2OS).
- The input capture (ICU) function is suited for measurements of intervals (frequencies) and pulse-widths.

- Register configuration

- ICU data register ch. 0 ch. 1 (IPCP0, IPCP1)

Note: This register holds a 16-bit free-run timer value when the valid edge of the corresponding external pin input waveform is detected. (You can word-access this register, but you cannot program it.)

- ICU cnotrol status register (ICS01)

Address	bit $15 \ldots \ldots . . .$. . bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000054H	(Disabled)	ICP1	ICPO	ICE1	ICE0	EG11	EG10	EG01	EG00	00000000в
		R/W								

R/W : Readable and writable
R : Read only
X : Unused

- Block diagram

[^2]
MB90520 Series

(3) Output Compare 0, 1 (OCU)

The output compare (OCU) is two sets of compare units consisting of a eight-channel OCU compare registers, a comparator and a control register.

An interrupt request can be generated for each channel upon a match detection by performing time-division comparison between the OCU compare data register setting value and the counter value of the 16 -bit free-run timer.

The OUT pin can be used as a waveform output pin for reversing output upon a match detection or a generalpurpose output port for directly outputting the setting value of the CMOD bit.

- Register Configuration

- OCU control status register ch.1, ch.23, ch.45, ch. 67 (OCS01, OCS23, OCS45, OCS67)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7.		bit 0	Initial value$--00000 \text { в }$
$\begin{aligned} & \text { ch. } 01 \text { : OCS01 : 0000063 } \\ & \text { ch. } 23: \text { OCS23 }: 0000065{ }^{2} \end{aligned}$	-	-	-	CMOD	OTE1	OTE0	OTD1	OTD0	(OCS)			
$\begin{aligned} & \text { ch. } 45: \text { OCS45 : 000002D } \\ & \text { ch. } 67 \text { : OCS } 67: 000002 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	-	-	-	R/W	R/W	R/W	R/W	R/W				
Address	bit 15.		bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
ch. 01 : OCS01 : 000062 ch. $23:$ OCS23 : 000064	(OCS)			ICP1	ICP0	ICE1	ICEO	-	-	CST1	CSTO	0000--00в
ch.45: OCS 45 : 00002CH				R/W	R/W	R/W	R/W	-	-	R/W	R/W	

- OCU control status register ch. 0 to ch. 7 (OCS0 to OCS7)

Address

ch. 0 : OCPO : 00005Вн
ch. $1:$ OCP1: 00005D
ch. 2 : OCP2 : 00005FH
ch. 3 : OCP3: 000061н
ch. 4 : OCPO : 00000D
ch. 5 : OCP1: 00001D
ch. 6 : OCP2 : 000035
ch. 7 : OCP3: 00006D

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8		Initial value
C15	C14	C13	C12	C11	C10	C09	C08	(OCP)	
R/W									

Address
ch. 0 : ОСР0: 00005Ан
ch. 1 : OCP1: 00005С ch. 2 : ОСP2:00005E ch. 3 : OCP3: 000060н ch. 4 : ОСР0:00000Сн ch. 5 : OCP1: 00001Cн ch. 6 : OCP2 : 000034н ch. 7 : ОСР3 : 00006Cн

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
(OCP)	C07	C06	C05	C04	C03	C02	C01	C00	XXXXXXXXв
	R/W								

[^3]
- Block diagram

- Output compare 0 (OCU)

*: Interrupt number

- Output compare 1

MB90520 Series

7. 8/16-bit Up/Down Counter/Timer 0, 1

The 8/16-bit up/down counter/timer consists of six event input pins, two 8 -bit up/down counters, two 8 -bit re-load compare registers, and their controllers.

(1) Register Configuration

- Up/down count register 0 (UDCRO)

Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000080н	(UDCR1)	D07	D06	D05	D04	D03	D02	D01	D00	00000000 в
		R	R	R	R	R	R	R	R	

- Up/down count register 1 (UDCR1)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit $7 \times \cdots \cdots \cdots \cdots$ bit 0	Initial value
000081H	D17	D16	D15	D14	D13	D12	D11	D10	(UDCR0)	00000000 в
	R	R	R	R	R	R	R	R		

- Re-load compare register 0 (RCRO)

Address		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000082н	(RCR1)	D07	D06	D05	D04	D03	D02	D01	D00	00000000в
		W	W	W	W	W	W	W	W	

- Re-load compare register 1 (RCR1)

Address

bit 15	bit 14	bit
Dit		

000083н

D17	D16	D15	D14	D13	D12	D11	D10	(RCRO)
W	W	W	W	W	W	W	W	

- Counter status register 0, 1 (CSR0, CSR1)

- Counter control register 0, 1 (CCRLO, CCRL1)

Address	bit $15 \cdots \cdots \cdots \cdots$ bit	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
CSRLO:000086 CSRL1:00008Ан	(CCRH0, CCRH1)	-	CTUT	UCRE	RLDE	UDCC	CGSC	CGE1	CGE0
CSRL1:00008Ан		R/W		R/W	R/W	R/W	R/W	R/W	R/W

- Counter control register 0 (CCRHO)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit $7 \times \ldots$. bit 0	Initial value
000087H	M16E	CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CESO	(CCRLO)	00000000 в
	R/W									

- Counter control register 1 (CCRH1)

[^4]
MB90520 Series

(2) Block Diagram

- Block diagram of 8/16-bit up/down counter/timer 0

- Block diagram of 8/16-bit up/down counter/timer 1

MB90520 Series

8. Extended I/O Serial Interface 0, 1

The extended I/O serial interface transfers data using a clock synchronization system having an 8-bit x 1 channel configuration.
For data transfer, you can select LSB first/MSB first.
(1) Register Configuration

- Serial mode control upper status register 0, 1 (SMCSH0, SMCSH1)

- Serial mode control lower status register 0, 1 (SMCSLO, SMCSL1)

Address
SMCSLO : 000024H
SMCSL1:000028н

Initial value
-- - 0000 в

- Serial data register 0, 1 (SDR0, SDR1)

Address SDRO : 000026 SDR1: 00002Ан

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
D7	D6	D5	D4	D3	D2	D1	$D 0$

Initial value $X X X X X X X X$ в

R/W : Readable and writable
R : Read only
\bar{x} : Unused
X : Indeterminate
(2) Block Diagram

MB90520 Series

9. UART (SCI)

UART (SCI) is general-purpose serial data communication interface for performing synchronous or asynchronous communication (start-stop synchronization system).

- Data buffer: Full-duplex double buffer
- Transfer mode: Clock synchronized (with start and stop bit)

Clock asynchronized (start-stop synchronization system)

- Baud rate: Embedded dedicated baud rate generator

External clock input possible
Internal clock (a clock supplied from 16-bit re-load timer can be used.)
$\left.\begin{array}{l}\text { Asynchronization } 9615 \mathrm{bps} / 31250 \mathrm{bps} / 4808 \mathrm{bps} / 2404 \mathrm{bps} / 1202 \mathrm{bps} \\ \text { CLK synchronization } 1 \mathrm{Mbps} / 500 \mathrm{kbps} / 250 \mathrm{kbps} / 125 \mathrm{kbps} / 62.5 \mathrm{kbps}\end{array}\right\} \begin{aligned} & \text { Internal machine clock } \\ & \text { For } 6 \mathrm{MHz}, 8 \mathrm{MHz}, 10 \mathrm{MHz} \text {, }\end{aligned}$
CLK synchronization $1 \mathrm{Mbps} / 500 \mathrm{kbps} / 250 \mathrm{kbps} / 125 \mathrm{kbps} / 62.5 \mathrm{kbps}\}$

12 MHz and 16 MHz

- Data length: 7 bit to 9 bit selective (without a parity bit)

6 bit to 8 bit selective (with a parity bit)

- Signal format: NRZ (Non Return to Zero) system
- Reception error detection: Framing error

Overrun error
Parity error (multi-processor mode is supported, enabling setup of any baud rate by an external clock.)

- Interrupt request: Receive interrupt (receive complete, receive error detection)

Receive interrupt (transmit complete)
Transmit/receive conforms to extended intelligent I/O service (EI2OS)

MB90520 Series

(1) Register Configuration

- Serial control register (SCR)

Address	bit 15 bit 14		bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit $7 \ldots \ldots \ldots \ldots$. bit 0	Initial value
000021H	PEN	P	SBL	CL	A/D	REC	RXE	TXE	(SMR)	00000100 в
	R/W	R/W	R/W	R/W	R/W	W	R/W	R/W		

- Serial mode register (SMR)

Address		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value 00000000
000020н	(SCR)	MD1	MD0	CS2	CS1	CSO	RESV	SCKE	SOE	
		R/W								

- Serial status register (SSR)

- Serial input data register (SIDR)

- Serial output data register (SODR)

Address	bit $15 \cdots \cdots \cdots \cdots$ bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value XXXXXXXX
000022н	(SSR)	D7	D6	D5	D4	D3	D2	D1	D0	
		W	W	W	W	W	W	W	W	

- Communications prescaler control register (CDCR)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit $7 \ldots \ldots \ldots$. ${ }^{\text {bit } 0}$	Initial value
000027	MD	-	-	-	DIV3	DIV2	DIV1	DIVO	(SDRO)	0--1111 ${ }_{\text {b }}$
	R/W		-	-	R/W	R/W	R/W	R/W		

[^5](2) Block Diagram

* : Interrupt number

MB90520 Series

10. DTP/External Interrupt Circuit

DTP (Data Transfer Peripheral), which is located between the peripheral circuit outside the device and the F^{2} MC-16LX CPU, receives an interrupt request or DMA request generated by the external peripheral circuit* for transmission to the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX}$ CPU. DTP is used to activate the intelligent I/O service or interrupt processing. As request levels, two types of " H " and "L" can be selected for the intelligent I/O service. Rising and falling edges as well as "H" and "L" can be selected for an external interrupt request.
*:The external peripheral circuit is connected outside the MB90520 series device.

(1) Register Configuration

- DTP/interrupt factor register (EIRR)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	.	
000031н	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	(ENIR)	
	R/W									

- DTP/interrupt enable register (ENIR)

Address		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	$\begin{aligned} & \text { Initial value } \\ & 00000000 \text { в } \end{aligned}$
000030	(EIRR)	EN7	EN6	EN5	EN4	EN3	EN2	EN1	ENO	
		R/W								

- Request level setting register (ELVR)

Address bit $15 \ldots \ldots \ldots$. bit 8 bit 7					bit 6 bit 5		bit 4	bit 3	bit 2	bit 1	bit 0	$\begin{aligned} & \text { Initial value } \\ & 00000000 \text { в } \end{aligned}$
Low order address 000032н		R uppe		LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	
				R/W								
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit	 bit 0	Initial value
	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA	(ELVR lower)			00000000 в
	R/W	R/										

R/W: Readable and writable
X : Indeterminate

MB90520 Series

(2) Block Diagram

MB90520 Series

11. Wake-up Interrupt

Wake-up intrrupts transmits interrupt request ("L" level) generated by peripheral equipment located between external periphera devices and the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX}$ CPU to the CPU and invokes interrupt processing.

The interrupt does not conform to the exterded intelligent I/O service (El²OS).

(1) Register Configuration

- Wake-up interrupt flag register (EIFR)

- Wake-up interrupt enable register (EICR)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8		$\begin{aligned} & \text { Initial value } \\ & 00000000 \text { в } \end{aligned}$
00001FH	EN7	EN6	EN5	EN4	EN3	EN2	EN1	ENO	(Disabled)	
	W	W	W	W	W	W	W	W		

R/W: Readable and writable
W: Write only

- : Unused
(2) Block Diagram

*: Interrupt number

MB90520 Series

12. Delayed Interrupt Generation Module

The delayed interrupt generation module generates interrupts for switching tasks for development on a realtime operating system (REALOS series). The module can be used to generate softwarewise generates hardware interrupt requests to the CPU and cancel the interrupts.
This module does not conform to the extended intelligent I/O service (EI2OS).
(1) Register Configuration

- Delayed interrupt factor generation/cancellation register (DIRR)

Note: Upon a reset, an interrupt is canceled.
R/W: Readable and writable

- : Unused

The DIRR is the register used to control delay interrupt request generation/cancellation. Programming this register with " 1 " generates a delay interrupt request. Programming this register with " 0 " cancels a delay interrupt request. Upon a reset, an interrupt is canceled. The reserved bit area can be programmed with either " 0 " or " 1 ". For future extension, however, it is recommended that bit set and clear instructions be used to access this register.
(2) Block Diagram

MB90520 Series

13. 8/10-bit A/D Converter

The 8/10-bit A/D converter has a function of converting analog voltage input to the analog input pins (input voltage) to digital values (A/D conversion) and has the following features.

- Minimum conversion time: $16.3 \mu \mathrm{~s}$ (at machine clock of 16 MHz , including sampling time)
- Minimum sampling period: $4 \mu \mathrm{~s} / 8 \mu \mathrm{~s} / 16 \mu \mathrm{~s} / 256 \mu \mathrm{~s}$ (at machine clock of 16 MHz)
- Compare time: 99/176 machine cycles per channel.
(99 machine cycles are used for a machine clock below 10 MHz .)
- Conversion method: RC successive approximation method with a sample and hold circuit.
- 8/10-bit resolution
- Analog input pins: Selectable from eight channels by software Single conversion mode: Selects and converts one channel.
Scan conversion mode: Converts two or more successive channels. Up to eight channels can be programmed.
Continuous conversion mode: Repeatedly converts specified channels.
Stop conversion mode: Stops conversion after completing a conversion for one channel and wait for the next activation (conversion can be started synchronously.)
- Interrupt requests can be generated and the extended intelligent I / O service ($\mathrm{E} I^{2} \mathrm{OS}$) can be started after the end of A / D conversion. Furthermore, A / D conversion result data can be transferred to the memory, enabling efficient continuous processing.
- When interrupts are enabled, there is no loss of data even in continuous operations because the conversion data protection function is in effect.
- Starting factors for conversion: Selected from software activation, and external trigger (falling edge).

MB90520 Series

(1) Register Configuration

- A/D control status register upper digits (ADCS2)

- A / D control status register lower digits (ADCS1)

Initial value 00000000 в

- A/D data register upper digits (ADCR2)

- A / D data register lower digits (ADCR1)

Address		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
000038	(ADCR2)	D7	D6	D5	D4	D3	D2	D1	D0	ХХХХХХХХХв

[^6]
(2) Block Diagram

ϕ : Machine clock frequency
TO : 16-bit PPG timer channel 1 output

* : Interrupt number

MB90520 Series

14. 8-bit D/A Converter

The 8 -bit D / A converter, which is based on the R-2R system, supports 8 -bit resolution mode. It contains two channels each of which can be controlled in terms of output by the D/A control register.
(1) Register Configuration

- D/A converter data register ch. 0 (DADRO)

Address		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00003Ан	(DADR1)	DA07	DA06	DA05	DA04	DA03	DA02	DA01	DA00	
		R/W	ХХХХХХХХХв							

- D/A converter data register ch. 1 (DADR1)

- D/A control register 0 (DACRO)

Address		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value ----- - 0в
$00003 \mathrm{CH}_{\text {H }}$	(DACR1)	-	-	-	-	-	-	-	DAE0	
		-	-	-	-	-	-	-	R/W	

- D/A control register 1 (DACR1)

R/W: Readable and writable

- : Unused

X : Indeterminate

MB90520 Series

15. Clock Timer

The clock timer control register (WTC) controls operation of the clock timer, and time for an interval interrupt.
(1) Register Configuration

- Clock timer control register (WTC)

Address		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	$\begin{aligned} & \text { Initial value } \\ & 1 \times 000000 \text { в } \end{aligned}$
0000AАн	(Disabled)	WDCS	SCE	WTIE	WTOF	WTR	WTC2	WTC1	WTCO	
		R/W	R	R/W	R/W	R	R/W	R/W	R/W	

R/W: Readable and writable
R : Read only
X : Indeterminate
(2) Block Diagram

MB90520 Series

16.LCD Controller/Driver

The LCD controller/driver, which contains a 16-byte display data memory, controls LCD indication using four common output pins and 32 segment output pins. It can select three types of duty output, and directly drive the LCD (liquid crystal display) panel.
(1) Register Configuration

- LCDC control register 0 (LCRO)

Address bit $15 \ldots \ldots \ldots \ldots$...........

00006Aн (LCR1)	CSS	LCEN	VSEL	BK	MS1	MSO	FP1	FP0
00010000 в								

- LCDC control register 1 (LCR1)

- Port 7/COM pin selection register (LCDCMR)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	,	Initial value- - - - 0000 в
00000Bн	-	-	-	-	COM3	COM2	COM1	COMO	(PDRA)	
	-	-	-	-	R/W	R/W	W	R/W		

R/W: Readable and writable

- : Unused

X : Indeterminate
RESV : Reserved bit

MB90520 Series

(2) Block Diagram

MB90520 Series

17. Communications Prescaler Register

This register controls machine clock division.
Output from the communications prescaler register is used for UARTO (SCI), UART1 (SCI), and extended I/O serial interface.

The communications prescaler register is so designed that a constant baud rate may be acquired for various machine clocks.
(1) Register Configuration

- Communications prescaler control register (CDCR)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8		Initial value 0-- - 1111 в
000027H	MD	-	-	-	DIV3	DIV2	DIV1	DIV0	(SDR0)	
	R/W	-	-	-	R/W	R/W	R/W	R/W		

R/W: Readable and writable

- : Unused

MB90520 Series

18. Address Match Detection Function

When the address is equal to a value set in the address detection register, the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code (01 H). As a result, when the CPU executes a set instruction, the INT9 instruction is executed. Processing by the INT\#9 interrupt routine allows the program patching function to be implemented.

Two address detection registers are supported. An interrupt enable bit and flag are prepared for each register. If the value set in the address detection register matches an address and if the interrupt enable bit is set at " 1 ", the interrupt flag is set at " 1 " and the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code. The interrupt flag is cleared to " 0 " by writing 0 by an instruction.

(1) Register Configuration

- Program address detection register 0 to 2 (PADR0)

- Program address detection control status register (PACSR)

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RESV | RESV | RESV | RESV | AD1E | AD1D | AD0E | AD0D |
| - | - | - | - | R/W | R/W | R/W | R/W |

Initial value 00000000 в

[^7]
MB90520 Series

(2) Block Diagram

MB90520 Series

19. ROM Mirroring Function Selection Module

The ROM mirroring function selection module can select what the FF bank allocated the ROM sees through the 00 bank according to register settings.
(1) Register Configuration

- ROM mirroring function selection register (ROMM)

W:Write only

- : Unused

Note: Do not access this register during operation at addresses 004000н to 00FFFFн.
(2) Block Diagram

MB90520 Series

20. Low-power Consumption (Stand-by) Mode

The F²MC-16LX has the following CPU operating mode configured by selection of an operating clock and clock operation control.

- Clock mode

PLL clock mode: A mode in which the CPU and peripheral equipment are driven by PLL-multiplied oscillation clock (HCLK).
Main clock mode: A mode in which the CPU and peripheral equipment are driven by divided-by-2 of the oscillation clock (HCLK).
The PLL multiplication circuits stops in the mainclock mode.

- CPU intermittent operation mode

The CPU intermittent operation mode is a mode for reducing power consumption by operating the CPU intermittently while external bus and peripheral functions are operated at a high-speed.

- Hardware stand-by mode

The hardware standby mode is a mode for reducing power consumption by stopping clock supply to the CPU by the low-power consumption control circuit, stopping clock supplies to the CPU and peripheral functions (timebase timer mode), and stopping oscillation clock (stop mode, hardware standby mode). Of these modes, modes other than the PLL clock mode are power consumption modes.
(1) Register Configuration

- Clock select register (CKSCR)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8		Initial value$11111100 \text { в }$
0000A1H	SCM	MCM	WS1	WSo	SCS	MCS	CS1	CSO	(LPMCR)	
	R	R	R/W	R/W	R/W	R/W	R/W	R/W		

- Low-power consumption mode control register (LPMCR)

Address		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value 00011000 в
0000AOH	(CKSCR)	STP	SLP	SPL	RST	TMD	CG1	CG0	SSR	
		W	W	R/W	W	W	R/W	R/W	R/W	

R/W: Readable and writable
R : Read only
W:Write only

MB90520 Series

(2) Block Diagram

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$\left(\mathrm{AV}\right.$ ss $\left.=\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}\right)$					
Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss-0.3	Vss +6.0	V	
	AVcc	Vss-0.3	Vss +6.0	V	*1
	AVRH, AVRL	Vss-0.3	Vss +6.0	V	*1
	DVcc	Vss-0.3	Vss +6.0	V	*1
Input voltage	V	Vss-0.3	$\mathrm{Vcc}+6.0$	V	*2
Output voltage	Vo	Vss-0.3	Vcc +6.0	V	*2
"L" level maximum output current	loL	-	15	mA	*3
"L" level average output current	lolav	-	4	mA	*4
"L" level total maximum output current	Elo	-	100	mA	
"L" level total average output current	Elolav	-	50	mA	*5
" H " level maximum output current	Іон	-	-15	mA	*3
" H " level average output current	lohav	-	-4	mA	*4
" H " level total maximum output current	Eloh	-	-100	mA	
"H" level total average output current	Elohav	-	-50	mA	*5
Power consumption	PD	-	300	mW	
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: $A V c c, A V R H, ~ A V R L$, and $D V c c$ shall never exceed $V c c$. AVRL shall never exceed AVRH.
*2: V_{1} and Vo shall never exceed $\mathrm{V} c \mathrm{c}+0.3 \mathrm{~V}$.
*3: The maximum output current is a peak value for a corresponding pin.
*4: Average output current is an average current value observed for a 100 ms period for a corresponding pin.
*5: Total average current is an average current value observed for a 100 ms period for all corresponding pins.
Note: Average output current $=$ operating currnet \times operating efficiency
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB90520 Series

2. Recommended Operating Conditions

$(\mathrm{AV} s \mathrm{~s}=\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	3.0	5.5	V	Normal operation (MB90523)
	Vcc	4.5	5.5	V	Normal operation (MB90F523) Guaranteed frequency $=10 \mathrm{MHz}$ at 4.0 V to 4.5 V
	Vcc	3.0	5.5	V	Retains status at the time of operation stop
Smoothing capacitor	Cs	0.1	1.0	$\mu \mathrm{F}$	*
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	

*: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs .

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

- C pin diagram

MB90520 Series

3. DC Characteristics

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
$\left\lvert\, \begin{aligned} & \text { "H" level } \\ & \text { input } \\ & \text { voltage }\end{aligned}\right.$	V_{H}	CMOS input pin	$\begin{aligned} & \mathrm{V} \mathrm{cc}=3.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & (\mathrm{MB90523}) \\ & \mathrm{Vcc}=4.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \text { (MB90F523) } \end{aligned}$	0.7 Vcc	-	V cc +0.3	V	
	V ${ }_{\text {нs }}$	CMOS hysteresis input pin		0.8 Vcc	-	V cc +0.3	V	
	V нм $^{\text {(}}$	MD pin input		V $\mathrm{cc}-0.3$	-	$\mathrm{V} c \mathrm{c}+0.3$	V	
"L" level input voltage	VIL	CMOS input pin		Vss -0.3	-	0.3 Vcc	V	
	VıLs	CMOS hysteresis input pin		Vss -0.3	-	0.2 Vcc	V	
	VILM	MD pin input		Vss - 0.3	-	Vss +0.3	V	
"H" level output voltage	Vон	Other than P90 and P97	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & \mathrm{l} \mathrm{OH}=-2.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V	
"L" level output voltage	Voı	All output pins	$\begin{aligned} & \mathrm{Vcc}=4.5 \mathrm{~V} \\ & \mathrm{loL}=2.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Open-drain output leakage current	lieak	Output pin P90 to P97	-	-	0.1	5	$\mu \mathrm{A}$	
Input leakage current	IIL	Other than P90 and P97	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-5	-	5	$\mu \mathrm{A}$	
Pull-up resistance	Rup	P00 to P07, P10 to P17, P40 to P47, RST, MD0, MD1	-	15	30	100	$\mathrm{k} \Omega$	
Pull-down resistance	Roown	MD0 to MD2	-	15	30	100	k Ω	

(Continued)

MB90520 Series

$\left(\mathrm{A} \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~A} \mathrm{~V}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply current*	Icc	V cc	Internal operation at 16 MHz Vcc at 5.0 V Normal operation	-	30	40	mA	MB90523
	Icc	Voc		-	85	130	mA	MB90F523
	Icc	V cc	Internal operation at 16 MHz Vcc at 5.0 V A/D converter operation	-	35	45	mA	MB90523
	Icc	Voc		-	90	140	mA	MB90F523
	Icc	Vcc	Internal operation at 16 MHz Vcc at 5.0 V D/A converter operation	-	40	50	mA	MB90523
	Icc	Vcc		-	95	145	mA	MB90F523
	Icc	Vcc	When data written in flash mode is erased	-	95	140	mA	MB90F523
	Iccs	Vcc	Internal operation at 16 MHz Vcc at 5.0 V In sleep mode	-	7	12	mA	MB90523
	Iccs	Voc		-	5	30	mA	MB90F523
	Iccı	Vcc	Internal operation at 8 kHz V_{cc} at 5.0 V $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Subsystem operatin	-	0.1	1.0	mA	MB90523
	Iccı	Voc		-	4	7	mA	MB90F523
	Iccls	V cc	Internal operation at 8 kHz V cc at 5.0 V $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ In subsleep mode	-	30	50	mA	MB90523
	Iccls	Vcc		-	0.1	1	mA	MB90F523
	Icct	V cc	Internal operation at 8 kHz Vcc at 5.0 V $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ In clock mode	-	15	30	$\mu \mathrm{A}$	MB90523
	Icct	Vcc		-	30	50	$\mu \mathrm{A}$	MB90F523
	ICCH	V cc	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ In stop mode	-	5	20	$\mu \mathrm{A}$	MB90523
	Іссн	Vcc		-	0.1	10	$\mu \mathrm{A}$	MB90F523
	Іссн	Vcc	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}(\text { max. }) \\ & \text { In stop mode } \end{aligned}$	-	-	200	$\mu \mathrm{A}$	MB90F523
Input capacitance	Cin	Other than AV cc, AVss, Vcc, Vss	-	-	10	80	pF	

(Continued)

MB90520 Series

(Continued)
$\left(\mathrm{AV} \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}\right.$ ss $=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
LCD split resistor	Rlco	V0 to V1, V1 to V2, V2 to V3	-	50	100	200	k Ω	
Output impedance for COMO to COM3	Rvcom	COM0 to COM3	V 1 to $\mathrm{V} 3=5.0 \mathrm{~V}$	-	-	2.5	k Ω	
Output impedance for SEG00 to SEG31	Rvseg	SEG00 to SEG31		-	-	15	k Ω	
LCDC leak current	ILckc	V0 to V3, COM1 to COM3, SEG00 to SEG31	-	-	-	± 5	$\mu \mathrm{A}$	

* : The current value is preliminary value and may be subject to change for enhanced characteristics without previous notice. The power supply current is measured with an external clock.

MB90520 Series

4. AC Characteristics

(1) Reset, Hardware Standby Input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Reset input time	trstL	$\overline{\text { RST }}$	-	4 tcp*	-	ns	
Hardware standby input time	thstL	HST		4 tcp*	-	ns	

* : For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

- Measurement conditions for AC ratings

C_{L} is a load capacitance connected to a pin under test.
Capacitors of $C_{L}=30 \mathrm{pF}$ must be connected to CLK and ALE pins, while C_{L} of 80 pF must be connected to address data bus (AD15 to AD00), $\overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$ pins.

(2) Specification for Power-on Reset

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Power supply rising time	tr	Vcc	-	0.05	30	ms	*
Power supply cut-off time	toff	Vcc		4	-	ms	Due to repeated operations

* : Vcc must be kept lower than 0.2 V before power-on.

Notes: - The above ratings are values for causing a power-on reset.

- When HST is set to "L", apply power according to this table to cause a power-on reset irrespective of whether or not a power-on reset is required.
- There are internal registers which can be initialized only by a power-on reset. Apply power according to this rating to ensure initialization of the registers.

MB90520 Series

(3) Clock Timings

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Clock frequency	Fc	X0, X1	-	3	-	16	MHz	
	Fc	X0, X1	$\begin{gathered} 4.0 \mathrm{~V} \text { to } \\ 4.5 \mathrm{~V} \end{gathered}$	3	-	10	MHz	MB90F523
	Fcı	X0A, X1A	-	-	32.768	-	kHz	
Clock cycle time	thcyl	X0, X1		62.5	-	333	ns	
	thcyL	X0, X1	$\begin{gathered} 4.0 \mathrm{~V} \text { to } \\ 4.5 \mathrm{~V} \end{gathered}$	100	-	333	ns	MB90F523
	tıcyl	X0A, X1A		-	30.5	-	$\mu \mathrm{s}$	
Input clock pulse width	$\begin{aligned} & \mathrm{Pwн}, \\ & \mathrm{PwL} \end{aligned}$	X0		10	-	-	ns	Recommened duty ratio of 30% to 70%
	Pwlh, Pwle	XOA		-	15.2	-	$\mu \mathrm{s}$	
Input clock rising/falling time	$\begin{aligned} & \text { tcR, } \\ & \text { tco } \end{aligned}$	X0, X0A		-	-	5	ns	External clock operation
Internal operating clock frequency	fcp	-		1.5	-	16	MHz	When the main clock is used
	fcp	-	$\begin{gathered} 4.0 \mathrm{~V} \text { to } \\ 4.5 \mathrm{~V} \end{gathered}$	1.5	-	10	MHz	When the main clock is used
	flcp	-		-	8.192	-	kHz	Subclock operation
Internal operating clock cycle time	tcp	-		62.5	-	333	ns	When the main clock is used
	tcp	-	$\begin{gathered} 4.0 \mathrm{~V} \text { to } \\ 4.5 \mathrm{~V} \end{gathered}$	100	-	333	ns	When the main clock is used
	tıcp	-		-	122.1	-	$\mu \mathrm{S}$	Subclock operation
Frequency fluctuation rate locked	$\Delta \mathrm{f}$	-		-	-	5	\%	*

*: The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied PLL signal is locked.
$\Delta \mathrm{f}=\frac{|\alpha|}{\mathrm{fo}} \times 100(\%) \quad$ Center frequency

The PLL frequency deviation changes periodically from the preset frequency "(about CLK \times (1 CYC to 50 CYC)", thus minimizing the chance of worst values to be repeated (errors are minimal and negligible for pulses with long intervals).

- X0, X1 clock timing

- X0A, X1A clock timing

- PLL operation guarantee range

Relationship between oscillating frequency, internal operating clock frequency, and power supply voltage

MB90520 Series

The AC ratings are measured for the following measurement reference voltages.

- Input signal waveform

Pins other than hystheresis input/MD input

- Output signal waveform

Hystheresis input pin

(4) Recommended Resonator Manufactures

- Sample application of ceramic resonator

- Mask ROM product (MB90522, MB90523)

Resonator manufacturer*	Resonator	$\begin{gathered} \hline \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C}_{2}(\mathrm{pF})$	R
Murata Mfg. Co., Ltd.	CSA2.00MG040	2.00	100	100	Not required
	CSA4.00MG040	4.00	100	100	Not required
	CSA8.00MTZ	8.00	30	30	Not required
	CSA16.00MXZ040	16.00	15	15	Not required
	CSA32.00MXZ040	32.00	5	5	Not required
TDK Corporation	CCR3.52MC3 to CCR6.96MC3	$\begin{gathered} 3.52 \\ \text { to } \\ 6.96 \end{gathered}$	Built-in	Built-in	Not required
	CCR7.0MC5 to CCR12.0MC5	$\begin{gathered} 7.00 \\ \text { to } \\ 12.00 \end{gathered}$	Built-in	Built-in	Not required
	CCR20.0MSC6 to CCR32.0MSC6	$\begin{gathered} 20.00 \\ \text { to } \\ 32.00 \end{gathered}$	Built-in	Built-in	Not required

(Continued)

MB90520 Series

(Continued)

- Flash ROM product (MB90F523)					
Resonator manufacturer*	Resonator	$\begin{gathered} \hline \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C}_{2}(\mathrm{pF})$	R
Murata Mfg. Co., Ltd.	CSA2.00MG040	2.00	100	100	Not required
	CSA4.00MG040	4.00	100	100	Not required
	CSA8.00MTZ	8.00	30	30	Not required
	CSA16.00MXZ040	16.00	15	15	Not required
	CST32.00MXZ040	32.00	5	5	Not required
TDK Corporation	CCR3.52MC3 to CCR6.96MC3	$\begin{gathered} 3.52 \\ \text { to } \\ 6.96 \end{gathered}$	Built-in	Built-in	Not required
	CCR7.0MC5 to CCR12.0MC5	$\begin{gathered} 7.0 \\ \text { to } \\ 12.0 \end{gathered}$	Built-in	Built-in	Not required
	CCR20.0MSC6 to CCR32.0MSC6	$\begin{gathered} 20.0 \\ \text { to } \\ 32.0 \end{gathered}$	Built-in	Built-in	Not required
Inquiry:Murata Mfg. Co., Ltd.. - Murata Electronics North America, Inc.: TEL 1-404-436-1300 - Murata Europe Management GmbH: TEL 49-911-66870 - Murata Electronics Singapore (Pte.): TEL 65-758-4233 TDK Corporation - TDK Corporation of America Chicago Regional Office: TEL 1-708-803-6100 - TDK Electronics Europe GmbH Components Division: TEL 49-2102-9450 - TDK Singapore (PTE) Ltd.: TEL 65-273-5022 - TDK Hongkong Co., Ltd.: TEL 852-736-2238 - Korea Branch, TDK Corporation: TEL 82-2-554-6636					

MB90520 Series

(5) Clock Output Timing

Parameter	Symbol	$\stackrel{\text { Pin }}{\text { nam }}$ name	Condition	Value		Unit	Remarks
				Min.	Max.		
Cycle time	tovc	CLK	$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$	62.5	-	ns	
	toyc	CLK	$\begin{aligned} & \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \% \\ & 4.0 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \end{aligned}$	100	-	ns	MB90F523
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcl	CLK	$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$	20	-	ns	
	tchCL	CLK	$\begin{aligned} & \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \% \\ & 4.0 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \end{aligned}$	32	-	ns	MB90F523

MB90520 Series

(6) Ready Input Timing

$$
\left(A V_{c c}=V_{c c}=5.0 \mathrm{~V} \pm 10 \%, A V_{s s}=\mathrm{V}_{s s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
RDY setup time	tryHs	RDY	-	45	-	ns	
RDY hold time	tRYнн	RDY		0	-	ns	

Note: Use the automatic ready function when the setup time for the rising edge of the RDY signal is not sufficient.

(7) Hold Timing
$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Pins in floating status \rightarrow $\overline{\text { HAK }} \downarrow$ time	txhaL	$\overline{\text { HAK }}$	-	30	1 tcp*	ns	
$\overline{\text { HAK } \uparrow \rightarrow \text { pin valid time }}$	thatv	HAK		1 tcp*	2 tcp*	ns	

* : For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

Note: More than 1 machine cycle is needed before $\overline{\text { HAK }}$ changes after HRQ pin is fetched.

MB90520 Series

(8) UART (SCI) Timing
$\left(A V_{c c}=V_{c c}=5.0 \mathrm{~V} \pm 10 \%, A V_{s s}=V_{s s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK0 to SCK4	Internal shift clock mode $\mathrm{C}\llcorner=80 \mathrm{pF}$ +1 TTL for an output pin	8 tcp*	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	SCK0 to SCK4, SOT0 to SOT4		-80	80	ns	
Valid SIN \rightarrow SCK \uparrow	tivsh	SCK0 to SCK4, SIN0 to SIN4		100	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	$\begin{aligned} & \text { SCK0 to SCK4, } \\ & \text { SIN0 to SIN4 } \end{aligned}$		60	-	ns	
Serial clock "H" pulse width	tshsL	SCK0 to SCK4	External shift clock mode $\mathrm{CL}=80 \mathrm{pF}$ +1 TTL for an output pin	4 tcp*	-	ns	
Serial clock "L" pulse width	tsısh	SCK0 to SCK4		4 tcp*	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	SCK0 to SCK4, SOT0 to SOT4		-	150	ns	
Valid SIN \rightarrow SCK \uparrow	tivsh	$\begin{aligned} & \text { SCK0 to SCK4, } \\ & \text { SIN0 to SIN4 } \end{aligned}$		60	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	$\begin{aligned} & \text { SCK0 to SCK4, } \\ & \text { SIN0 to SIN4 } \end{aligned}$		60	-	ns	

*: For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."
Notes: • These are AC ratings in the CLK synchronous mode.

- C_{L} is the load capacitor value connected to pins while testing.

MB90520 Series

- Internal shift clock mode

- External shift clock mode

MB90520 Series

(9) Timer Input Timing

$$
\left(\mathrm{A} \mathrm{~V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{Vss}^{2}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Input pulse width	$\begin{aligned} & \text { ttiwn, } \\ & \text { ttiwL } \end{aligned}$	IN0, IN1	-	4 tcp*	-	ns	

* : For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

(10) Timer Output Timing
$\left(\mathrm{AV} \mathrm{Cc}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{Ss}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Max.			
CLK $\uparrow \rightarrow$ Tout transition time	tто	OUT0 to OUT3, PPG0, PPG1	-	30	-	ns	

MB90520 Series

5. A/D Converter Electrical Characteristics

$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V}, 3.0 \mathrm{~V} \leqq \mathrm{AVRH}-\mathrm{AVRL}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit
				Min.	Typ.	Max.	
Resolution	-	-	-	-	8/10	-	bit
Total error	-	-		-	-	± 5.0	LSB
Non-linear error	-	-		-	-	± 2.5	LSB
Differential linearity error	-	-		-	-	± 1.9	LSB
Zero transition voltage	Vot	ANO to AN7		$\begin{gathered} \mathrm{AV} \text { ss } \\ -3.5 \mathrm{LSB} \end{gathered}$	+0.5 LSB	$\begin{gathered} \mathrm{AV} \text { ss } \\ +4.5 \mathrm{LSB} \end{gathered}$	mV
Full-scale transition voltage	$V_{\text {fst }}$	ANO to AN7		$\begin{gathered} \mathrm{AVRH} \\ -6.5 \mathrm{LSB} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { AVRH } \\ -1.5 \mathrm{LSB} \end{array}$	$\begin{gathered} \text { AVRH } \\ +1.5 \mathrm{LSB} \end{gathered}$	mV
Conversion time	-	-	$V_{c c}=5.0 \mathrm{~V} \pm 10 \%$ at machine clock of 16 MHz	176 tcp*	-	-	ns
Sampling period	-	-	$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$ at machine clock of 16 MHz	-	64 tcp*	-	ns
Analog port input current	Iain	ANO to AN7	-	-	-	10	$\mu \mathrm{A}$
Analog input voltage	Vain	ANO to AN7		AVRL	-	AVRH	V
Reference voltage	-	AVRH		$\begin{aligned} & \text { AVRL } \\ & +2.7 \end{aligned}$	-	AVcc	V
	-	AVRL		0	-	$\begin{gathered} \text { AVRH } \\ -2.7 \end{gathered}$	V
Power supply current	IA	AV cc		-	5	-	mA
	Iat	AVcc	Supply current when CPU stopped and 8/10-bit A/D converter not in operation $(\mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{Cc}=\mathrm{AVRH}=5.0 \mathrm{~V})$	-	-	5	$\mu \mathrm{A}$
Reference voltage supply current	IR	AVRH	-	-	400	-	$\mu \mathrm{A}$
	Irh	AVRH	Supply current when CPU stopped and 8/10-bit A/D converter not in operation $(\mathrm{V} \mathrm{Cc}=\mathrm{AV} \mathrm{Cc}=\mathrm{AVRH}=5.0 \mathrm{~V})$	-	-	5	$\mu \mathrm{A}$
Offset between channels	-	ANO to AN7	-	-	-	4	LSB

*: For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

MB90520 Series

6. A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter
Linearity error: The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow " 000000 0001 ") with the full-scale transition point ("11 11111110 " $\leftrightarrow " 111111$ 1111") from actual conversion characteristics

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)

MB90520 Series

(Continued)

7. Notes on Using A/D Converter

The impedance value of about $5 \mathrm{k} \Omega$ or lower for the external circuit of analog input are recommended.
When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \mu \mathrm{~s}$ @machine clock of 16 MHz).

- Block diagram of analog input circuit model

MB90523
Ron: Approx. $1.5 \mathrm{k} \Omega$
C: Approx. 3.0 pF
MB90F523
Ron: Approx. $3.0 \mathrm{k} \Omega$
C: Approx. 65 pF
Note: Listed values must be considered as standards.

- Error

The smaller the | AVRH - AVRL |, the greater the error would become relatively.

MB90520 Series

8. D/A Converter Electrical Characteristics

$$
\left(\mathrm{AV}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=\mathrm{DV} \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=\mathrm{DV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Value				Unit
			Remarks				
Resolution	-	-	-	8	-	bit	
Differential linearity error	-	-	-	-	± 0.9	LSB	
Absolute accuracy	-	-	-	-	± 1.2	$\%$	
Linearity error	-	-	-	-	± 1.5	LSB	
Conversion time	-	-	-	10	20	$\mu \mathrm{~s}$	Load capacitance: 20 pF
Analog reference voltage	-	DV cc	$\mathrm{V}_{\mathrm{ss}}+3.0$	-	AV cc	V	
Reference voltage supply current	lovR	DV Cc		-	-	300	$\mu \mathrm{~A}$
Analog output impedance	-	-	-	20	-	$\mathrm{k} \Omega$	

EXAMPLE CHARACTERISTICS

(1) Power Supply Current (MB90523)

MB90520 Series

(2) Power Supply Current (MB90F523)

$\mathrm{ICCH}^{\mathrm{C}}-\mathrm{VCc}$

MB90520 Series

INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Description of items in instruction list

Item	Description
Mnemonic	English upper case and symbol: Described directly in assembler code. English lower case: Converted in assembler code. Number of letters after English lower case: Describes bit width in code.
\#	Describes number of bytes.
\sim	Describes number of cycles. m : For branch operation n : For non-branch operation For other letters in other items, refer to table 4.
RG	Describes the number of times the register is accessed during instruction execution. Used to calculate a corrective value for CPU intermittent operation.
B	Describes correction value for calculating number of actual cycles (refer to table 5). Number of actual cycles is calculated by adding values in the ~section and section B.
Operation	Describes operation of instructions.
LH	Describes a special operation to the upper 8-bit of the lower 16-bit of the accumulator. Z : Transfer 0 . X : Sign-extend and transfer. - : No transmission
AH	Describes a special operation to the upper 16-bit of the accumulator. * : Transmit from AL to AH. - : No transfer. Z : Transfer 00 H to AH . X: Sign-extend AL and transfer 00 н or FF_{H} to AH .
1	Describe status of I (interrupt enable), S (stack), T (sticky bit), N (negative), Z (zero), V (overflow), and C (carry) flags. * : Changes after execution of instruction. - : No changes. S: Set after execution of instruction. R: Reset after execution of instruction.
S	
T	
N	
Z	
V	
C	
RMW	Describes whether or not the instruction is a read-modify-write type (a data is read out from memory etc. in single cycle, and the result is written into memory etc.). * : Read-modify-write instruction - : Not read-modify-write instruction Note: Not used to addresses having different functions for reading and writing operations.

- Number of execution cycles

The number of cycles required for instruction execution is acquired by adding the number of cycles for each instruction, a corrective value depending on the condition, and the number of cycles required for program fetch. Whenever the instruction being executed exceeds the two-byte (word) boundary, a program on an internal ROM connected to a 16 -bit bus is fetched. If data access is interfered with, therefore, the number of execution cycles is increased.
For each byte of the instruction being executed, a program on a memory connected to an 8 -bit external data bus is fetched. If data access in interfered with, therefore, the number of execution cycles is increased. When a general-purpose register, an internal ROM, an internal RAM, an internal I/O device, or an external bus is accessed during intermittent CPU operation, the CPU clock is suspended by the number of cycles specified by the CG1/0 bit of the low-power consumption mode control register. When determining the number
of cycles required for instruction execution during intermittent CPU operation, therefore, add the value of the number of times access is done \times the number of cycles suspended as the corrective value to the number of ordinary execution cycles.

Table 2 Description of Symbols in Instruction Table

Item	Description
A	32-bit accumlator The bit length is dependent on the instructions to be used. Byte : Lower 8-bit of AL Word :16-bit of AL Long : AL: 32-bit of AH
AH AL	Upper 16-bit of A Lower 16-bit of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Specify shortened direct address.
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Specify direct address. Specify physical direct address. bit0 to bit15 of addr24 bit16 to bit 23 of addr24
io	I/O area (000000H to 0000FFH)
\#imm4 \#imm8 \#imm16 \#imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data calculated by sign-extending an 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset value

(Continued)
(Continued)

Item	Description		
vct4	Vector number (0 to 15) vct8		
Vector number (0 to 255)		\quad bb	Bit address
:---:			
ear			
eam		Specify PC relative branch.	
:---			
Specify effective address (code 00 to 07).			
Specify effective address (code 08 to 1F).			

Table 3 Effective Address Field

Code	Symbol		Address type	$\begin{array}{c}\text { Number of bytes in address } \\ \text { extension block }\end{array}$	
00	R0	RW0	RL0	Register direct	
01	R1	RW1	(RL0)	ea corresponds to byte, word, and	
02	R2	RW2	RL1		
long word from left respectively.					

Note: Number of bytes for address extension corresponds to "+" in the \# (number of bytes) the number of bytes in detailed instruction rules part in the instruction table.

MB90520 Series

Table 4 Number of Execution Cycles for Effective Address in Addressing Modes

Code	Operand	(a)	Number of register accesses for addressing modes
		Number of execution cycles for addressing modes	
00 to 07	$\begin{gathered} \hline \mathrm{Ri} \\ \mathrm{RWi} \\ \mathrm{RLi} \end{gathered}$	Listed in instruction table	Listed in instruction table
08 to 0B	@RWj	2	1
0 C to 0F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
1 C 1 D 1 E 1 F	$\begin{gathered} \text { @RW0 + RW7 } \\ \text { @RW1 + RW7 } \\ \text { @PC + disp16 } \\ \text { addr16 } \end{gathered}$	4 4 2 1	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$

Note: (a) is used for ~ (number of cycles) and B (correction value) detailed instruction rules in instruction table.
Table 5 Correction Value for Number of Cycles for Calculating Actual Number of Cycles

Operand	(b) byte		(c) word		(d) long	
	Number of cycles	Number of access	Number of cycles	Number of access	Number of cycles	Number of access
Internal register	+0	1	+0	1	+0	2
Internal memory even address	+0	1	+0	1	+0	2
Internal memory odd address	+0	1	+2	2	+4	4
External data bus 16-bit even address External data bus 16-bit odd address	+1	1	+1	1	+2	2
External data bus 8-bit	+1	1	+4	2	+8	4

Notes: • (b), (c), (d) is used for ~ (number of cycles) and B (correction value) in instruction table.

- When the external bus is used, cycles for wait insertion for the ready input and automatic ready operation must be added.
Table 6 Correction Value for Number of Cycles for Calculating Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	-	+2
External data bus 16-bit	-	+3
External data bus 8-bit	+3	-

Notes: - When the external bus is used, cycles for wait insertion for the ready input and automatic ready operation must be added.

- Because execution of instruction is not delayed for all program fetch operations, use this value to calculate the worst case.

MB90520 Series

Table 7 Transmission Instruction (Byte) [41 Instructions]

	Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMw
MOV	A, dir	2	3	0	(b)	byte $(\mathrm{A}) \leftarrow$ (dir)	Z		-	-	-			-	-	
MOV	A, addr16	3	4	0	(b)	byte (A) \leftarrow (addr16)	Z	*	-	-	-	*		-	-	-
MOV	A, Ri	1	2	1	0	byte (A) $\leftarrow($ Ri)	Z	*	-	-	-	*		-	-	-
MOV	A, ear	2	2		0	byte $(A) \leftarrow$ (ear)	Z	*	-	-	-	*	*	-	-	-
MOV	A, eam	$2+$	$3+$ (a)	0	(b)	byte (A) $\leftarrow($ eam)	Z	*	-	-	-	*		-	-	-
MOV	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	Z	*	-	-	-			-	-	-
MOV	A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow$ imm8	Z	*	-	-	-			-	-	-
MOV	A, @A	2	3	0	(b)	byte $(A) \leftarrow((A))$	Z	-	-	-	-			-	-	-
MOV	A, @RLi + disp8	3	10	2	(b)	byte $(\mathrm{A}) \leftarrow(($ RLi $)+$ disp8)	Z		-	-	-		*	-	-	-
MOVN	A, \#imm4	1	1	0	0	byte $(\mathrm{A}) \leftarrow \mathrm{imm4}$	Z		-	-	-	R		-	-	-
MOVX	A, dir	2	3	0	(b)	byte $($ A $) \leftarrow$ (dir)	X		-	-	-			-	-	-
MOVX	A, addr16	3	4	0	(b)	byte (A) \leftarrow (addr16)	X		-	-	-	*	*	-	-	-
MOVX	A, Ri	2	2	1	0	byte (A) $\leftarrow($ Ri)	X	*	-	-	-	*	*	-	-	
MOVX	A, ear	2	2	1	0	byte (A) \leftarrow (ear)	X		-	-		*		-	-	-
MOVX	A, eam	$2+$	$3+$ (a)	0	(b)	byte (A) \leftarrow (eam)	X		-		*	*		-	-	
MOVX	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	X		-	-	-	*		-	-	
MOVX	A, \#imm8	2	2	0	0	byte (A) \leftarrow imm8	X		-	-	-	*		-	-	-
MOVX	A, @A	2	3	0	(b)	byte $(A) \leftarrow((A))$	X	-	-	-	-			-	-	-
MOVX	A, @RWi + disp8	2	5	1	(b)	byte (A) $\leftarrow(($ RWi) + disp8)	X		-	-	-			-	-	-
MOVX	A, @RLi + disp8	3	10	2	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RLi})+$ disp8)	X	*	-	-	-			-	-	-
MOV	dir, A	2	3	0	(b)	byte (dir) $\leftarrow(A)$	-	-	-	-	-			-	-	-
MOV	addr16, A	3	4	0	(b)	byte (addr16) $\leftarrow(A)$	-	-	-	-	-			-	-	-
MOV	Ri, A	1	2	1	(byte $($ Ri) $\leftarrow(A)$	-	-	-	-	-			-	-	-
MOV	ear, A	2	2	1	(b)	byte (ear) $\leftarrow(A)$	-	-	-	-	-			-	-	-
MOV	eam, A	$2+$	$3+$ (a)	0	(b)	byte (eam) $\leftarrow(A)$	-	-	-	-	-			-	-	-
MOV	io, A	2	3	0	(b)	byte (io) $\leftarrow\left(\begin{array}{l}\text { (})\end{array}\right.$	-	-	-	-	-			-	-	-
MOV	@RLi + disp8, A	3	10	2	(b)	byte ((RLi) + disp8) ¢ (A)	-	-	-	-	-			-	-	-
MOV	Ri, ear	2	3	2	(b)	byte (Ri) \leftarrow (ear)	-	-	-	-	-			-	-	-
MOV	Ri, eam	$2+$	4 + (a)	1	(b)	byte $(\mathrm{Ri}) \leftarrow($ eam $)$	-		-		-			-	-	
MOV	ear, Ri	2	4	2	(b)	byte (ear) \leftarrow (Ri)	-		-		-			-	-	
MOV	eam, Ri	$2+$	$5+$ (a)	1	(b)	byte (eam) $\leftarrow(\mathrm{Ri})$	-		-		-			-	-	
MOV	Ri, \#mm8	2	2	0	0	byte (Ri) \leftarrow imm8	-		-		-			-	-	
MOV	io, \#imm8	3	5	0	(b)	byte (io) \leftarrow imm8	-		-	-	-	-	-	-	-	
MOV	dir, \#imm8	3	5	0	(b)	byte (dir) \leftarrow imm8	-		-	-	-	-	-	-	-	
MOV	ear, \#imm8	3	2	1	0	byte (ear) \leftarrow imm8	-		-		-			-	-	
MOV	eam, \#imm8 @AL, AH	$3+$	4 + (a)	0	(b)	byte (eam) \leftarrow imm8	-							-		
/MOV	@A, T	2	3	0	(b)	byte $((A)) \leftarrow(A H)$	-	-	-	-	-			-	-	-
XCH	A, ear	2	4	2	0	byte $(\mathrm{A}) \leftrightarrow$ (ear)	Z	-	-		-			-	-	-
XCH	A, eam	$2+$	$5+$ (a)	0	$2 \times$ (b)	byte (A) \leftrightarrow (eam)	Z	-	-	-	-	-	-	-	-	-
XCH	Ri, ear	2	7	4	0	byte (Ri) $\leftrightarrow($ ear	-	-	-	-	-	-	-	-	-	-
XCH	Ri, eam	$2+$	$9+$ (a)	2	$2 \times$ (b)	byte (Ri) \leftrightarrow (eam)	-	-	-	-	-	-	-	-	-	-

Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

MB90520 Series

Table 8 Transmission Instruction (Word, Long) [38 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	A	H	I	S	T	N	Z	V	C	RMW
MOVW A, dir	2	3	0	(c)	word (A) \leftarrow (dir)	-			-	-	-			-	-	
MOVW A, addr16	3	4	0	(c)	word $(A) \leftarrow$ (addr16)	-			-	-	-	*	*	-	-	-
MOVW A, SP	1	1	0	0	word $(A) \leftarrow(S P)$	-			-	-	-	*	*	-	-	-
MOVW A, RWi	1	2	1	0	word $(\mathrm{A}) \leftarrow(\mathrm{RWi})$	-			-	-	-	*	*	-	-	-
MOVW A, ear	2	(a)	1	(c)	word $(A) \leftarrow($ ear $)$	-			-	-	-	*	*	-	-	-
MOVW A, eam	$2+$	$3+$ (a)	0	(c)	word $(A) \leftarrow($ eam $)$	-			-	-	-	*	*	-	-	-
MOVW A, io	2	3	0	(c)	word (A) \leftarrow (io)	-			-	-	-	*	*	-	-	-
MOVW A, @A	2	3	0	(c)	word $(A) \leftarrow((A))$	-	-	-	-	-	-	*	*	-	-	-
MOVW A, \#imm16	3	2	0	0	word $(A) \leftarrow$ imm16	-			-	-	-	*	*	-	-	-
MOVW A, @RWi + disp8	2		1	(c)	word (A) $\leftarrow(($ RWi) + disp8)	-			-	-	-	*	*	-	-	-
MOVW A, @RLi + disp8	3	10	2	(c)	word $(A) \leftarrow((R L i)+$ disp8)	-			-	-	-	*	*	-	-	-
MOVW dir, A	2	3	0	(c)	word (dir) \leftarrow (A$)$					-	-			-		
MOVW addr16, A	3	4	0	(c)	word (addr16) $\leftarrow(A)$	-			-	-	-		*	-		
MOVW SP, A	1	1	0		word (SP) $\leftarrow(\mathrm{A})$	-				-	-		*	-		-
MOVW RWi, A	1	2	1	0	word (RWi) $\leftarrow(A)$	-		-		-	-			-		-
MOVW ear, A	2	2	1	0	word (ear) $\leftarrow(A)$	-		-		-	-					-
MOVW eam, A	$2+$	$3+$ (a)	0	(c)	word (eam) $\leftarrow(A)$	-				-	-			-		-
MOVW io, A	2	3	0	(c)	word (io) \leftarrow (A)					-	-			-		-
MOVW @RWi + disp8, A	2	5	1	(c)	word ($($ RWi) + disp8) \leftarrow (A)	-		-	-	-	-			-		-
MOVW @RLi + disp8, A	3	10	2	(c)	word ((RLi) +disp8) $\leftarrow(\mathrm{A})$	-				-	-			-		-
MOVW RWi, ear	2	3	2	0	word (RWi) \leftarrow (ear)	-				-	-			-		-
MOVW RWi, eam	$2+$	4 + (a)	1	(c)	word $(\mathrm{RWi}) \leftarrow($ eam $)$	-				-	-			-		-
MOVW ear, RWi	2	4	2	(c)	word (ear) $\leftarrow($ RWi)					-	-			-		
MOVW eam, RWi	$2+$	$5+$ (a)	1	(c)	word (eam) $\leftarrow(\mathrm{RWi})$					-	-					
MOVW RWi, \#imm16	3	2	1	0	word $(\mathrm{RWi}) \leftarrow$ imm16	-				-	-					
MOVW io, \#imm16	4	5	0	(c)	word (io) \leftarrow imm16					-	-		-			
MOVW ear, \#imm16	4	2	1	0	word (ear) \leftarrow imm16					-	-					
MOVW eam, \#imm16	$4+$	4 + (a)	0	(c)	word (eam) \leftarrow imm16											
MOVW @AL, AH /MOVW @A, T	2	3	0	(c)	word $((A)) \leftarrow(\mathrm{AH})$	-				-	-					
XCHW A, ear	2	4	2	0	word $(A) \leftrightarrow$ (ear)					-	-		-	-		-
XCHW A, eam	$2+$	$5+$ (a)	0	$2 \times$ (c)	word (A) \leftrightarrow (eam)					-	-	-	-	-	-	-
XCHW RWi, ear	2	7	4	0	word (RWi) \leftrightarrow (ear)	-		-	-	-	-	-	-	-	-	-
XCHW RWi, eam	$2+$	$9+(\mathrm{a})$	2	$2 \times$ (c)	word (RWi) $\leftrightarrow($ eam $)$	-			-	-	-	-	-	-		-
MOVL A, ear		4		(d)	long (A) \leftarrow (ear)					-	-					-
MOVL A, eam	$2+$	$5+$ (a)	0	(d)	long $(A) \leftarrow($ eam $)$	-				-	-			-		-
MOVL A, \#imm32	5	3	0)	long (A) \leftarrow imm32	-				-	-					
MOVL ear, A	2	4	2	0	long (ear1) $\leftarrow(A)$	-			-	-	-	*	*	-		-
MOVL eam, A	$2+$	$5+$ (a)	0	(d)	long (eam1) $\leftarrow(A)$	-			-	-	-			-		-

Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

MB90520 Series

Table 9 Add/Subtract (Byte, Word, Long) [42 Instructions]

Mnemonic		\#		RG	B	Operation	LH	AH	1 S	S	T N	N	Z	V	C	RMW
ADD	A,\#im	2	2	0	0	byte $(A) \leftarrow(A)+i m m 8$	Z									
ADD	dir	2	5	0	(b)	byte $(A) \leftarrow(A)+($ dir $)$	Z	-	-		-					
ADD	A, ear	2	3	1	(b)	byte $(A) \leftarrow(A)+($ ear $)$	Z	-	-		- *					
ADD	A, eam	$2+$	$4+$ (a)	0	(b)	byte $(A) \leftarrow(A)+($ eam $)$	Z	-	-	-	- *					
ADD	ear, A	2	(a)	2	0	byte (ear) $\leftarrow($ ear $)+($ A $)$		-	-		-					-
ADD	eam,	$2+$	$5+$ (a)	0	$2 \times$ (b)	byte $($ eam $) \leftarrow$ (eam) + (A)	Z	-	-		-					
ADDC	A	1	(a)	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$	Z	-	-		-					
ADDC	A, e	2	3	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{ear})+(\mathrm{C})$	Z	-	-		-					
ADDC	A, ea	$2+$	+	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+($ eam $)+(\mathrm{C})$	Z	-	-	-	-					
ADDDC	A	1	3	0	0	byte (A) $\leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$ (decimal)	Z	-	-							
SUB	A, \#imm	2	2	0	(b)	byte $(A) \leftarrow(A)-$ imm8	Z									
SUB	A, dir	2	5	0	(b)	byte $(A) \leftarrow(A)-$ dir)	Z									
SUB	A, ear	2	3	1	0	byte $(A) \leftarrow(A)-$ (ear)	Z									
SUB	A, eam	$2+$	4 + (a)	0	(b)	byte $(A) \leftarrow(A)-($ eam $)$	Z									
SUB	ear, A	2	3	2	(byte (ear) \leftarrow (ear) - (A)										
SUB	eam, A	$2+$	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow (eam) - (A)										
SUBC		1	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})$	Z									
SUBC	A, ea	2	3	1	0	byte $(A) \leftarrow(A)-($ ear $)-(C)$	Z	-								
SUBC	A, eam	$2+$	$4+$ (a)	0	(b)	byte $(A) \leftarrow(A)-($ eam $)-(C)$	Z									-
SUBDC		1	,	0)	byte (A) $\leftarrow(\mathrm{AH})-(\mathrm{AL})-$ (C) (decimal)	Z	-								
DW	A		2	0	0											
dow	A, ear	2	3	1	0	word $(A) \leftarrow(A)+($ ear $)$	-		-	-	-					
ADDW	A, eam	$2+$	$4+$ (a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)$	-		-	-	-					
ADDW	A, \#imm	3	2	0	0	word $(A) \leftarrow(A)+$ imm16	-		-	-	-					
ADDW	ear, A	2	3	2	0	word (ear) $\leftarrow($ ear $)+($ A $)$	-		-	-	-					-
DDW	eam, A	$2+$	$5+$ (a)	0	$2 \times$ (c)	word (eam) \leftarrow (eam) + (A)	-		-	-	-					
ADDCW	A, ea	2	3	1	0	word $(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{ear})+(\mathrm{C})$	-		-							
ADDCW	A, ea	$2+$	4 + (a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)+(C)$	-		-	-						
SUBW	A	1	2	0	0	word $(A) \leftarrow(A H)-(A L)$	-		-	-						
SUBW	A, ear	2	3	1	0	word $(A) \leftarrow(A)-(e a r)$	-		-	-						
SUBW	A, eam	$2+$	$4+$ (a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)$	-		-							
SUBW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ - imm16	-	-	-							
SUBW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) - (A)		-								-
SUBW	eam,	2	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)-(A)$	-	-	-	-	-					
SUBCW	A, ear	2	3	1	0	word $(\mathrm{A}) \leftarrow(\mathrm{A})-(\mathrm{ear})-(\mathrm{C})$	-	-	-	-						
SUBCW	A, eam	$2+$	4 + (a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)-(C)$	-	-	-	-	-					
	A,	2	6	2		long $(A) \leftarrow(A)+($ ear $)$										-
ADDL	A, eam	$2+$	$7+$ (a)	0	(d)	long $(A) \leftarrow(A)+($ eam $)$	-				-					
AD	A, \#imm32	5	4	0	0	ong $(A) \leftarrow(A)+i m m 32$	-		-	-	-					
SUB	A, ear	2	${ }^{6}$	2	(d)	long $(A) \leftarrow(A)-$ ear)	-		-	-	-					-
SUBL	A, eam	$2+$	$7+(\mathrm{a})$	0	(d)	long $(A) \leftarrow(A)-($ eam $)$	-	-	-	-	-					-
SUBL	A, \#imm32	5	4	0	0	$\mathrm{g}(\mathrm{A}) \leftarrow(\mathrm{A})-\mathrm{imm} 32$	-		-							-

Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

MB90520 Series

Table 10 Increment/Decrement (Byte, Word, Long) [12 Instructions]

Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 11 Compare (Byte, Word, Long) [11 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
CMP	A	1	1	0	0	byte (AH) - (AL)	-	-	-	-	-					-
CMP	A, ear	2	2	1	0	byte (A) - (ear)	-	-	-	-	-	*	*	*	*	-
CMP	A, eam	$2+$	$3+$ (a)	0	(b)	byte (A) - (eam)	-	-	-	-	-	*	*	*	*	-
CMP	A, \#imm8	2	2	0	0	byte (A) - imm8	-	-	-	-	-	*	*	*	*	-
CMPW	A	1	1	0	0	word (AH) - (AL)	-	-	-	-	-			*	*	-
CMPW	A, ear	2	2	1	0	word (A) - (ear)	-	-	-	-	-	*	*	*	*	-
CMPW	A, eam	$2+$	$3+$ (a)	0	(c)	word (A) - (eam)	-	-	-	-	-	*	*	*	*	-
CMPW	A, \#imm16	3	2	0	0	word (A) - imm16	-	-	-	-	-			*	*	-
	A, ear	2	6	2		word (A) - (ear)	-	-	-	-	-	*	*	*	*	
CMPL	A, eam	$2+$	7 + (a)	0	(d)	word (A) - (eam)	-	-	-	-	-	*	*	*	*	
CMPL	A, \#imm32	5	(a)	0	0	word (A) - imm32	-	-	-	-	-	*	*	*	*	

Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 12 Unsigned Multiply/Division (Word, Long) [11 Instructions]

Mnemonic		\#	~	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
DIVU	A	1	*1	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)	-	-	-	-	-	-	-	*	*	-
DIVU	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	-	-	-	-	-	-	-	*	*	-
DIVU	A, eam	$2+$	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	-	-	-	-	-	-	-	*	*	-
DIVUW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-	-	-	-	-	-	-	*	*	-
DIVUW	A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	-	-	*	*	-
MULU	A	1	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, eam	$2+$	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A	1	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, ear	2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, eam	$2+$	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

*1: Set to 3 when the division-by-0, 7 for an overflow, and 15 for normal operation.
*2: Set to 4 when the division-by-0, 8 for an overflow, and 16 for normal operation.
*3: Set to $6+(a)$ when the division-by- $0,9+(a)$ for an overflow, and $19+(a)$ for normal operation.
*4: Set to 4 when the division-by-0, 7 for an overflow, and 22 for normal operation.
*5: Set to $6+$ (a) when the division-by- $0,8+$ (a) for an overflow, and $26+$ (a) for normal operation.
*6: When the division-by-0, (b) for an overflow, and $2 \times(\mathrm{b})$ for normal operation.
*7: When the division-by-0, (c) for an overflow, and $2 \times$ (c) for normal operation.
*8: Set to 3 when byte (AH) is zero, 7 when byte (AH) is not zero.
*9: Set to 4 when byte (ear) is zero, 8 when byte (ear) is not zero.
*10: Set to $5+(\mathrm{a})$ when byte (eam) is zero, $9+(\mathrm{a})$ when byte (eam) is not zero.
*11: Set to 3 when word (AH) is zero, 11 when word (AH) is not zero.
*12: Set to 4 when word (ear) is zero, 12 when word (ear) is not zero.
*13: Set to $5+(\mathrm{a})$ when word (eam) is zero, $13+(\mathrm{a})$ when word (eam) is not zero.
Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

MB90520 Series

Table 13 Signed Multiplication/Division (Word, Long) [11 Instructions]

Mnem	onic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMw
DIV	A	2	*1	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)	Z	-	-	-	-	-	-	*	*	-
DIV	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	Z	-	-	-	-	-	-	*	*	-
DIV	A, eam	$2+$	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	Z	-	-	-	-	-	-	*	*	-
DIVW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-	-	-	-	-	-	-	*	*	-
DIVW	A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	-	-	*		-
MULU	A	2	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, eam	$2+$	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A	2	*11		0	word (AH) *word (AL) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, ear	2	*12		0	word (A) ${ }^{*}$ word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, eam	$2+$	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

*1: Set to 3 when the division-by-0, 8 or 18 for an overflow, and 18 for normal operation.
*2: Set to 3 when the division-by-0, 10 or 21 for an overflow, and 22 for normal operation.
*3: Set to $4+$ (a) when the division-by-0, $11+$ (a) or $22+$ (a) for an overflow, and $23+(a)$ for normal operation.
*4: Positive dividend: Set to 4 when the division-by- 0,10 or 29 for an overflow, and 30 for normal operation.
Negative dividend: Set to 4 when the division-by-0, 11 or 30 for an overflow and 31 for normal operation.
*5: Positive dividend: Set to $4+$ (a) when the division-by- $0,11+$ (a) or $30+$ (a) for an overflow, and $31+$ (a) for normal operation.
Negative dividend: Set to $4+$ (a) when the division-by- $0,12+(a)$ or $31+(a)$ for an overflow, and $32+(a)$ for normal operation.
*6: When the division-by-0, (b) for an overflow, and $2 \times$ (b) for normal operation.
*7: When the division-by-0, (c) for an overflow, and $2 \times$ (c) for normal operation.
*8: Set to 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*9: Set to 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
*10: Set to $4+(a)$ when byte (eam) is zero, $13+(a)$ when the result is positive, and $14+(a)$ when the result is negative.
*11: Set to 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*12: Set to 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
*13: Set to $4+(a)$ when word (eam) is zero, $17+$ (a) when the result is positive, and $20+(a)$ when the result is negative.
Notes: - When overflow occurs during DIV or DIVW instruction execution, the number of execution cycles takes two values because of detection before and after an operation.

- When overflow occurs during DIV or DIVW instruction execution, the contents of AL are destroyed.
- For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

MB90520 Series

Table 14 Logic 1 (Byte, Word) [39 Instructions]

Mnemonic		\#		RG	B	Operation	LH	AH	H	1	S	T	N	Z	V	C	RMw
AND	A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$ and imm8					-				R	-	
AND	A, ear	2	3	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ and (ear)	-	-	-	-	-	-			R	-	-
AND	A, eam	$2+$	$4+$ (a)	0	(b)	byte $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	-			R	-	-
AND	ear, A	2	3	2	(byte (ear) \leftarrow (ear) and (A)	-	-	-	-	-	-			R	-	$\overline{-}$
AND	eam, A	$2+$	$5+$ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam) and (A)	-		-	-	-	-			R	-	
OR	A, \#imm	2	2	0	0	byte $(A) \leftarrow(A)$ or imm8	-				-				R	-	-
OR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ or (ear)	-		-	-	-	-	*	*	R	-	-
OR	A, eam	$2+$	$4+$ (a)	0	(b)	byte $(A) \leftarrow(A)$ or (eam)	-		-	-	-	-			R	-	-
OR	ear, A	2	(a)	2	0	byte (ear) \leftarrow (ear) or (A)					-	-			R	-	-
OR	eam, A	$2+$	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow (eam) or (A)			- -	-	-	-			R	-	
XOR	A, \#imm 8	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ xor imm8					-				R	-	-
XOR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ xor (ear)	-		-	-	-	-			R	-	
XOR	A, eam	$2+$	$4+$ (a)	0	(b)	byte $(A) \leftarrow(A)$ xor (eam)	-		-		-	-			R	-	
XOR	ear, A	2	3		0	byte (ear) \leftarrow (ear) xor (A)	-		-	-	-				R	-	
XOR	eam, A	$2+$	$5+$ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam) xor (A)	-		-		-				R	-	
NOT	A	1	2	0	(b)	byte $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$	-		-		-	-			R	-	
NOT	ear	2	3	2	0	byte (ear) \leftarrow not (ear)					-			*	R	-	-
NOT	eam	$2+$	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow not (eam)	-		-		-				R	-	
ANDW	A	1	2	0	0	word $(A) \leftarrow(A H)$ and (A)	-				-				R	-	
ANDW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ and imm16	-		-	-	-	-	*	*	R	-	-
ANDW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ and (ear)	-		-	-	-	-	*	*	R	-	-
ANDW	A, eam	$2+$	4 + (a)	0	(c)	word $(A) \leftarrow(A)$ and (eam)	-		-		-	-	*	*	R	-	-
ANDW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) and (A)	-		-		-	-		*	R	-	-
ANDW	eam, A	$2+$	$5+$ (a)	0	$2 \times$ (c)	word (eam) \leftarrow (eam) and (A)	-	-	- -	-	-	-			R	-	
ORW	A	1	2	0	0	word $(A) \leftarrow(A H)$ or (A)	-				-	-			R	-	-
ORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ or imm16	-		-	-	-	-			R	-	-
ORW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ or (ear)	-		-	-	-	-			R	-	-
ORW	A, eam	$2+$	$4+$ (a)	0	(c)	word $(A) \leftarrow(A)$ or (eam)	-		-	-	-	-			R	-	-
ORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) or (A)	-		-	-	-	-		*	R	-	-
ORW	eam, A	$2+$	$5+$ (a)	0	$2 \times$ (c)	word (eam) \leftarrow (eam) or (A)	-	-	- -	-					R	-	
XORW		1	2	0	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ xor (A)	-	-	-	-	-				R	-	-
XORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ xor imm16	-		-	-	-	-			R	-	-
XORW	A, ear	2	3	1	(word $(A) \leftarrow(A)$ xor (ear)	-				-	-			R	-	-
XORW	A, eam	$2+$	$4+$ (a)	0	(c)	word $(A) \leftarrow(A)$ xor (eam)	-				-	-			R	-	-
XORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) xor (A)	-				-	-			R	-	-
XORW	eam, A	$2+$	$5+$ (a)	0	$2 \times$ (c)	word (eam) \leftarrow (eam) xor (A)	-				-	-			R	-	
NOTW	A	1	2	0	0	word $(A) \leftarrow \operatorname{not}(A)$	-		-	-	-	-		*	R	-	-
NOTW	ear	2		2	0	word (ear) \leftarrow not (ear)	-	-	-	-	-	-		*	R	-	-
NOTW	eam	$2+$	$5+$ (a)	0	$2 \times$ (c)	word (eam) \leftarrow not (eam)	-	-	-		-	-		*	R	-	*

Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

MB90520 Series

Table 15 Logic 2 (Long) [6 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMV
ANDL	A, ear	2	6	2	0	(A)	-	-	-		-			R	-	
ANDL	A, eam	$2+$	7 + (a)	0	(d)	long $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
ORL	A, ear	2	+	2	0	long $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	-
ORL	A, eam	$2+$	7 + (a)	0	(d)	long $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
$\begin{aligned} & \text { XORL } \\ & \text { XORL } \end{aligned}$	A, ear A, eam	$\begin{gathered} 2 \\ 2^{2}+ \end{gathered}$	6 $7+(a)$	2	$\begin{gathered} 0 \\ \text { (d) } \end{gathered}$	long $(A) \leftarrow(A)$ xor (ear) long $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-

Table 16 Sign Reverse (Byte, Word) [6 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
NEG	A	1	2	0	0	byte $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	X	-	-	-	-	*	-	-		-
NEG NEG	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(\mathrm{a}) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(\mathrm{b}) \end{gathered}$	byte (ear) $\leftarrow 0$ - (ear) byte $($ eam $) \leftarrow 0-$ (eam)	-	-	-	-	-	*	*	*	*	-
NEGW	A	1	2	0	0	word $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	-	-	-	-	-	*	*	*	*	-
NEGW NEGW	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(\mathrm{a}) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(\mathrm{c}) \end{gathered}$	word (ear) $\leftarrow 0$ - (ear) word (eam) $\leftarrow 0$ - (eam)	-	-	-	-	-	*	*	*	*	-

Table 17 Normalize Instruction (Long) [1 Instruction]

Mnemonic	$\#$	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
NRML A, R0	2	$* 1$	1	0	long (A) \leftarrow Shift to where "1" is originally located byte (R0) \leftarrow Number of shifts in the operation	-	-	-	-	-	-	$*$	-	-	-

*1: Set to 4 when the accumulator is all " 0 ", otherwise set to $6+(R 0)$.
Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

MB90520 Series

Table 18 Shift Type Instruction (Byte, Word, Long) [18 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
RORC A	2		0	0	byte $(A) \leftarrow$ With right-rotate carry			-	-	-	*				-
ROLC A	2	2	0	0	byte $($ A $) \leftarrow$ With left-rotate carry	-	-	-	-	-		*	-	*	
RORC ear	2	3	2	0	byte (ear) \leftarrow With right-rotate carry		-	-	-	-			-	*	-
RORC eam	$2+$	5+(a)	0	$2 \times$ (b)	byte (eam) \leftarrow With right-rotate carry	-	-	-	-	-			-	*	*
ROLC ear	2	3	2	0	byte (ear) \leftarrow With left-rotate carry	-	-	-	-	-		*	-	*	-
ROLC eam	$2+$	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow With left-rotate carry	-	-	-	-	-	*	*	-		
ASR A, R0	2	*1	1	0	byte (A) \leftarrow Arithmetic right barrel shift (A, R0)	-	-	-	-	*		*	-	*	
LSR A, R0	2	*1	1	0	byte (A) \leftarrow Logical right barrel shift ($A, R 0$)		-	-	-	*	*	*	_	*	-
LSL A, R0	2	*1	1	0	byte (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-		-
ASRW A	,	2	0	0	word (A) \leftarrow Arithmetic right shift ($\mathrm{A}, 1$ b bit)		-	-	-				-		-
LSRW ASHRW A	1	2	0	0	word (A) \leftarrow Logical right shift (A, 1 bit)			-	-	*	R	*	-	*	-
LSLW ASHLWA	1	2	0	0	word (A) \leftarrow Logical left shift (A, 1 bit)	-	-	-	-	-	*	*	-	*	-
ASRW A, R0	2	*1	1	0	word $(\mathrm{A}) \leftarrow$ Arithmetic right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSRW A, R0	2	${ }^{*} 1$	1	0	word (A) \leftarrow Logical right barrel shift (A, RO)	-	-	-	-	*	*	*	_	*	-
LSLW A, R0	2	*1	1	0	word (A) \leftarrow Logical left barrel shift (A, RO)	-	-	-	-	-	*	*	-		-
ASRL A, R0	2	*2	1	0	long (A) \leftarrow Arithmetic right barrel shift (A, R0)			-			*	*	-		
LSRL A, R0	2	*2	1	0	long (A) \leftarrow Logical right barrel shift (A, RO)	-	-	-	-	*	*	*	_		-
LSLL A, R0	2	*2	1	0	long (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-		-

*1: Set to 6 when R0 is 0 , otherwise $5+(R 0)$.
*2: Set to 6 when R0 is 0 , otherwise $6+(R 0)$.
Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 19 Branch 1 [31 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH		AH	1	S	T	N	Z	V	C	RMW
BZ/BEQ rel	2	*1	0	0	Branch if (Z) = 1	-		-	-	-	-	-	-	-	-	-
BNZBNE rel	2	*1	0	0	Branch if $(Z)=0$	-	-	-	-	-	-	-	-	-	-	-
BC/BLO rel	2	*1	0	0	Branch if (C) = 1	-	-	-	-	-	-	-	-	-	-	-
BNC/BHS rel	2	*1	0	0	Branch if (C) $=0$	-	-	-	-	-	-	-	-	-	-	-
BN rel	2	*1	0	0	Branch if (N) $=1$	-	-	-	-	-	-	-	-	-	-	-
BP rel	2	*1	0	0	Branch if (N) $=0$	-		-	-	-	-	-	-	-	-	-
BV rel	2	*1	0	0	Branch if (V) $=1$	-		-	-	-	-	-	-	-	-	-
BNV rel	2	*1	0	0	Branch if (V) $=0$	-		-	-	-	-	-	-	-	-	-
BT rel	2	*1	0	0	Branch if (T$)=1$	-		-	-	-	-	-	-	-	-	-
BNT rel	2	*1	0	0	Branch if (T) $=0$	-		-	-	-	-	-	-	-	-	-
BLT rel	2	*1	0	0	Branch if (V) xor (N) = 1	-		-	-	-	-	-	-	-	-	-
BGE rel	2	*1	0	0	Branch if (V) xor (N) $=0$	-		-	-	-	-	-	-	-	-	-
BLE rel	2	*1	0	0	Branch if ((V) xor (N)) or (Z$)=1$	-		-	-	-	-	-	-	-	-	-
BGT rel	2	*1	0	0	Branch if (V) xor (N) or $(\mathrm{Z})=0$	-		-	-	-	-	-	-	-	-	-
BLS rel	2	*1	0	0	Branch if (C) or $(Z)=1$			-	-	-	-	-	-	-	-	-
BHI rel	2	*1	0	0	Branch if (C) or (Z) =0			-	-	-	-	-	-	-	-	-
BRA rel	2	*1	0	0	Branch unconditionally	-		-	-	-	-	-	-	-	-	-
JMP @A	1	2	0	0	word $(\mathrm{PC}) \leftarrow(\mathrm{A})$				-	-	-	-	-	-	-	-
JMP addr16	3	3	0	0	word $(\mathrm{PC}) \leftarrow$ addr16			-	-	-	-	-	-	-	-	-
JMP @ear	2	3	1	0	word (PC) \leftarrow (ear)				-	-	-	-	-	-	-	-
JMP @eam	$2+$	$4+$ (a)		(c)	word (PC) $\leftarrow($ eam $)$				-	-	-	-	-	-	-	-
JMPP @ear**	2	+		(d)	word (PC) $\leftarrow($ ear) , (PCB) $\leftarrow($ ear +2$)$				-	-	-	-	-	-	-	-
JMPP @eam*3	$2+$	$6+$ (a)	0	(d)	word (PC) $\leftarrow($ eam), (PCB) $\leftarrow($ eam +2$)$				-	-	-	-	-	-	-	-
JMPP addr24	4	4	0	0	$\begin{aligned} & \text { word }(P C) \leftarrow \text { ad24 0-15, } \\ & (P C B) \leftarrow \text { ad24 16-23 } \end{aligned}$				-	-	-	-		-	-	-
CALL @ear*4	2	6	1	(c)	word (PC) \leftarrow (ear)	-		-	-	-	-	-	-	-	-	-
CALL @eam*4	$2+$	$7+$ (a)	0	$2 \times$ (c)	word (PC) \leftarrow (eam)	-		-	-	-	-	-	-	-	-	-
CALL addr16*5	3	(0	(c)	word (PC) \leftarrow addr 16	-		-	-	-	-	-	-	-	-	-
CALLV \#vct4*5	1	7	0	$2 \times$ (c)	Vector call instruction	-		-	-	-	-	-	-	-	-	-
CALLP @ear*	2	10	2	$2 \times$ (c)	$\begin{aligned} & \text { word }(P C) \leftarrow(\text { ear } 0-15 \\ & (P C B) \leftarrow(\text { ear }) 16-23 \end{aligned}$				-	-	-			-	-	-
CALLP @eam*6	$2+$	11 + (a)	0	*2	word $(\mathrm{PC}) \leftarrow($ eam $) 0-15$ $(\mathrm{PCB}) \leftarrow($ eam $) 16-23$				-	-	-	-		-	-	-
CALLP addr24 *7	4	10	0	$2 \times$ (c)	$\begin{aligned} & \text { word }(P C) \leftarrow \text { ad24 0-15, } \\ & (P C B) \leftarrow \text { ad24 16-23 } \end{aligned}$	-		-	-	-	-	-	- -	-	-	-

*1: Set to 4 when branch is executed, and 3 when branch is not executed.
*2: (b) $+3 \times$ (c)
*3: Reads (word) of the branch destination address.
*4: W pushes to stack (word), and R reads (word) of the branch destination address.
*5: Pushes to stack (word).
*6: W pushes to stack (long), and R reads (long) of the branch destination address.
*7: Pushes to stack (long).
Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 20 Branch 2 (Byte) [19 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
CBNE A, \#imm8, rel	3	*1	0	0	Branch if byte (A) $=$ imm8	-	-	-	-	-	*	*	*	*	-
CWBNE A, \#imm16, rel	4	*1	0	0	Branch if word (A) \neq imm16	-	-	-	-	-	*	*	*	*	-
CBNE ear, \#imm8, rel	4	*2	1	0	Branch if byte (ear) $=$ imm8	-	-	-	-	-	*	*	*	*	-
CBNE eam, \#imm8, rel* ${ }^{\text {+10 }}$	$4+$	*3	0	(b)	Branch if byte (eam) $=$ imm8	-	-	-	-	-	*	*	*	*	-
CWBNE ear, \#imm16, rel	5	* 4	,	0	Branch if word (ear) $=$ imm16	-	-	-	-	-	*	*		*	-
CWBNE eam, \#imm16, rex*10	$5+$	*3	0	(c)	Branch if word (eam) \neq imm16	-	-	-	-	-	*	*	*	*	-
DBNZ ear, rel	3	* 5	2	0	byte (ear) $=$ (ear) -1,	-	-	-	-	-	*	*	*	-	-
					Branch if (ear) $=0$										
DBNZ eam, rel	$3+$	*6	2	$2 \times$ (b)	byte (eam) = (eam) -1 , Branch if (eam) $\neq 0$	-	-	-	-	-	*	*	*	-	*
DWBNZ ear, rel	3	*5	2	0	word (ear) $=$ (ear) - 1 ,	-	-	-	-	-	*	*	*	-	-
DWBNZ eam, rel	$3+$	*6	2	$2 \times$ (c)	$\begin{aligned} & \text { Branch if }(\text { ear }) \neq 0 \\ & \text { word }(\text { eam })=(\text { eam })-1, \end{aligned}$ $\text { Branch if (eam) } \neq 0$	-	-	-	-	-	*	*	*	-	*
INT \#vct8	2	20	0	$8 \times$ (c)	Software interrupt		-	R	S	-	-	-		-	-
INT addr16	3	16	0	$6 \times$ (c)	Software interrupt	-	-	R	S	-	-	-		-	-
INTP addr24	4	17	0	$6 \times$ (c)	Software interrupt	-	-	R	S	-	-	-		-	-
INT9	1	20	0	$8 \times$ (c)	Software interrupt	-	-	R	S	-	-	-	-	-	-
RETI	1	17	0	* 7	Return from interrupt	-	-	*		*	*	*	*		-
LINK \#imm8	2	6	0	(c)	Stores old frame pointer in the beginning of the	-	-	-	-	-	-	-	-	-	-
					function, set new frame pointer, and reserves local pointer area										
UNLINK	1	5	0	(c)	Restore old frame pointer from stack in the end of the function	-	-	-	-	-	-	-	-	-	-
RET *8	1	4	0	(c)	Return from subroutine	-	-	-	-	-	-	-		-	-
RETP *9	1	6	0	(d)	Return from subroutine	-	-	-	-	-	-	-	-	-	

*1: Set to 5 when branch is executed, and 4 when branch is not executed.
*2: Set to 13 when branch is executed, and 12 when branch is not executed.
*3: Set to $7+$ (a) when branch is executed, and $6+(\mathrm{a})$ when branch is not executed.
*4: Set to 8 when branch is executed, and 7 when branch is not executed.
*5: Set to 7 when branch is executed, and 6 when branch is not executed.
*6: Set to $8+$ (a) when branch is executed, and $7+$ (a) when branch is not executed.
*7: Set to $3 \times(\mathrm{b})+2 \times$ (c) when an interrupt request occurs, and $6 \times$ (c) for return.
*8: Return from stack (word).
*9: Return from stack (long).
*10: Do not use the addressing mode of RWj + in CBNE/CWBNE instruction.
Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

MB90520 Series

Table 21 Miscellaneous Control Types (Byte, Word, Long) [28 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH		AH	I	S	T	N	(Z	Z	V	C	RMw
PUSHW A	1	4	0	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{A})$	-		-	-	-	-	-	-	-	-	-	-
PUSHW AH	1	4	0	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{AH})$	-		-	-	-	-	-	-	-	-	-	-
PUSHW PS		4	0	(c)	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{PS})$			-	-	-	-			-	-	-	-
PUSHW rlst	2	*3	+\&	*4	$(\mathrm{PS}) \leftarrow(\mathrm{PS})-2 \mathrm{n},((\mathrm{SP})) \leftarrow(\mathrm{rlst})$	-		-	-	-	-			-	-	-	-
POPW A	1	3	0	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{SP})$), (SP) $\leftarrow(\mathrm{SP})+2$	-			-	-	-		-	-	-	-	-
POPW AH	1	3	0	(c)	word $(\mathrm{AH}) \leftarrow((\mathrm{SP}))$, (SP) $\leftarrow(\mathrm{SP})+2$	-		-	-	-	-	-	-	-	-	-	-
POPW PS	1	4	0	(c)	word (PS) $\leftarrow((\mathrm{SP})$), , (SP) $\leftarrow(\mathrm{SP})+2$	-		-	*	*						*	-
POPW rlst	2	*2	+\&	* 4	$(\mathrm{rlst}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2 \mathrm{n}$	-		-	-	-	-			-	-	-	-
JCTX @A	1	14	0	$6 \times$ (c)	Context switch instruction	-		-	*	*	*			*	*	*	-
AND CCR,\#imm	2	3	0	0	byte $(C C R) \leftarrow(C C R)$ and imm8	-		-	*	*					*		-
OR CCR,\#imm	2	3	0	0	byte $(C C R) \leftarrow(C C R)$ or imm8			-	*	*	*			*	*	*	-
MOV RP, \#imm	2	2	0	0	byte (RP) \leftarrow imm8			-	-	-				-	-	-	-
MOV ILM, \#imm8	2	2	0	0	byte (ILM) \leftarrow imm8			-	-	-	-			-	-	-	-
MOVEA RWi, ear	2	3	1	0	word $($ RWi) \leftarrow ear			-	-	-	-			-	-	-	-
MOVEA RWi, eam	$2+$	$2+$ (a)	1	0	word (RWi) \leftarrow eam	-		-	-	-	-			-	-	-	-
MOVEA A, ear	2	1	0	0	word $(A) \leftarrow$ ear	-			-	-	-		-	-	-	-	-
MOVEA A, eam	$2+$	$1+$ (a)	0	0	word (A) \leftarrow eam	-			-	-	-		-			-	
ADDSP \#imm8	2	3	0	0	word $(S P) \leftarrow(S P)+$ ext (imm8)				-	-					-	-	-
ADDSP \#imm16	3	3	0	0	word $(S P) \leftarrow(S P)+$ imm16	-		-	-	-	-	-	-	-	-	-	-
MOV A, brgl	2	*1	0	0	byte $(\mathrm{A}) \leftarrow$ ((brgl)	Z			-	-					-	-	-
MOV brg2, A	2	1	0	0	byte (brg2) $\leftarrow(\mathrm{A})$	-		-	-	-	-					-	-
NOP	1	1	0	0	No operation			-	-	-					-	-	-
ADB	,	1	0	0	Prefix code for accessing AD space			-	-	-	-		-	-	-	-	-
DTB	1	1	0	0	Prefix code for accessing DT space			-	-	-	-		-	-	-	-	-
PCB	1	1	0	0	Prefix code for accessing PC space	-		-	-	-	-	-	-	-	-	-	-
SPB	1	1	0	0	Prefix code for accessing SP space	-		-	-	-	-	-	-	-	-	-	-
NCC	1	1	0	0	Prefix code for no change in flag	-	-	-	-	-	-	-	-	-	-	-	-
CMR	1	1	0	0	Prefix for common register bank	-		-	-	-	-	-	-	-	-	-	-

*1: PCB, ADB, SSB, USB, and SPB : 1 state DTB, DPR
: 2 states
*2: $7+3 \times$ (number of POPs) $+2 \times$ (the number of the last register to be POPed), 7 if rlst $=0$ (no transfer registers)
*3: $29+3 \times$ (number of PUSHes) $-3 \times$ (the number of the last register to be PUSHed), 8 if rlst $=0$ (no transfer registers)
*4: (Number of POPs) \times (c), or (number of PUSHes) \times (c)
Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 22 Bit Manipulation Instruction [21 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH		AH	1	S	T	N	Z	V	C	RMW
MOVB A, dir:bp	3	5	0	(b)	byte $(A) \leftarrow$ (dir:bp) b	Z			-	-	-				-	
MOVB A, addr16:bp	4	5	0	(b)	byte $(A) \leftarrow($ addr16:bp) b	Z			-	-	-	*		-	-	-
MOVB A, io:bp	3	4	0	(b)	byte $(A) \leftarrow$ (io:bp) b	Z			-	-	-	*		-	-	-
MOVB dir:bp, A	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-		-	-	-	-	*		-	-	*
MOVB addr16:bp, A		7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-		-	-	-	-	*			-	
MOVB io:bp, A	3	6	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-		-	-	-	-	*			-	
SETB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 1$	-		-	-	-	-	-	-		-	*
SETB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 1$	-		-	-	-	-	-	-		-	*
SETB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 1$	-			-	-	-	-	-		- -	*
CLRB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 0$	-		-	-	-	-	-	-		-	*
CLRB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 0$	-		-	-	-	-	-	-	-	-	
CLRB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 0$	-			-	-	-	-	-	-	-	*
BBC dir:bp, rel	4	*1	0	(b)	Branch if (dir:bp) $\mathrm{b}=0$	-			-	-	-	-			-	-
BBC addr16:bp, rel	5	*1	0	(b)	Branch if (addr16:bp) b $=0$	-		-	-	-	-	-		-	-	-
BBC io:bp, rel	4	*2	0	(b)	Branch if (io:bp) $b=0$	-		-	-	-	-	-		-	-	-
BBS dir:bp, rel	4	*1	0	(b)	Branch if (dir:bp) $\mathrm{b}=1$	-			-	-	-	-			-	-
BBS addr16:bp, rel	5	*1	0	(b)	Branch if (addr16:bp) $b=1$	-		-	-	-	-	-			-	-
BBS io:bpvrel	4	*2	0	(b)	Branch if (io:bp) $b=1$	-		-	-	-	-	-			-	-
SBBS addr16:bp, rel	5	*3	0	$2 \times$ (b)	Branch if (addr16:bp) b=1, bit =	-			-	-	-	-			-	
WBTS io:bp	3	* 4	0	* 5	Wait until (io:bp) $\mathrm{b}=1$	-			-	-	-	-	-		-	-
WBTC io:bp	3	* 4	0	*	Wait until (io:bp) $\mathrm{b}=0$	-			-	-	-	-	-	-	-	-

*1: Set to 8 when branch is executed, and 7 when branch is not executed.
*2: Set to 7 when branch is executed, and 6 when branch is not executed.
*3: 10 if conditions are met, 9 when conditions are not met.
*4: Indeterminate times
*5: Until conditions are met
Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

MB90520 Series

Table 23 Accumulator Manipulation Instruction (Byte, Word) [6 Instructions]

Mnemonic	$\#$	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMw
SWAP	1	3	0	0	byte (A) $0-7 \leftrightarrow($ (A) $8-15$	-	-	-	-	-	-	-	-	-	-
SWAPW/XCHW AL, AH	1	2	0	0	word (AH) \leftrightarrow (AL)	-	$*$	-	-	-	-	-	-	-	-
EXT	1	1	0	0	byte sign-extension	X	-	-	-	-	$*$	$*$	-	-	-
EXTW	1	2	0	0	word sign-extension	-	X	-	-	-	$*$	$*$	-	-	-
ZEXT	1	1	0	0	byte zero-extension	Z	-	-	-	-	R	$*$	-	-	-
ZEXTW	1	1	0	0	word zero-extension	-	Z	-	-	-	R	$*$	-	-	-

Table 24 String Instruction [10 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOVS/MOVSI	2	*2	*5	*	byte transfer @AH + \leftarrow @AL +, Counter = RW0	-	-	-		-	-	-	-	-	-
MOVSD	2	*2	*5	* 3	byte transfer @AH - \leftarrow @AL - Counter = RW0	-	-	-	-	-	-	-	-	-	-
SCEQ/SCEQ	2	*1	*5	*4	byte search (@AH +) - AL, Counter = RW0	-	-	-	-	-	*	*	*	*	-
SCEQD	2	*1	*5	* 4	byte search (@AH -) - AL, Counter = RW0	-	-	-	-	-	*	*	*	*	-
FISL/FILSI	2	$6 \mathrm{~m}+6$	*5	*3	byte fill @AH $+\leftarrow$ AL, Counter = RW0	-	-	-	-	-	*	*	-	-	-
MOVSW/MOVSWI	2	*2	*8	* 6	word transfer @AH + \leftarrow @AL + Counter = RW0	-	-	-		-	-	-	-	-	-
MOVSWD	2	*2	*8	* 6	word transfer @AH - \leftarrow @AL Counter = RW0	-	-	-	-	-	-	-	-	-	-
SCWEQ/SCWEQI	2	*1	*8	*7	word search (@AH +) - AL, Counter = RW0	-	-	-	-	-	*	*	*	*	-
SCWEQD	2	*1	*8	* 7	word search (@AH -) - AL, Counter $=$ RW0	-	-	-	-	-	*	*	*	*	-
FILSW/FILSWI	2	$6 \mathrm{~m}+6$	*8	* 6	word fill @AH $+\leftarrow A L$, Counter = RW0	-	-	-	-	-	*	*	-	-	-

m : RW0 value (counter value)
n : Number of loops
*1: 5 when RW0 is $0,4+7 \times($ RW0 $)$ when count out, and $7 \times \mathrm{n}+5$ when matched
*2: 5 when RW0 is 0 , otherwise $4+8 \times(\mathrm{RWO})$
*3: To access different areas for source $(b) \times(\mathrm{RW} 0)+(b) \times(\mathrm{RW} 0)$ and source destination, calculate item (b) independently.
*4: (b) $\times n$
*5: $2 \times$ (RW0)
*6: To access different areas for source $(\mathrm{c}) \times(\mathrm{RW} 0)+(\mathrm{c}) \times(\mathrm{RW} 0)$ and source destination, calculate item (b) independently.
*7: (c) $\times \mathrm{n}$
*8: $2 \times($ RW0 $)$
Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."
Table 25 2-byte Instruction Map [Byte $1=6 \mathrm{FH}$]

	00	10	20	30	40	50	60	70	80	90	A0	B0	CO	D0	E0	F0
+0	$\mathrm{MOV}_{\mathrm{A}, \mathrm{DTB}}$	MOV DTB, A	MOVX A, @RL0 + d8	$\begin{gathered} \text { MOV @RLO } \\ +\mathrm{d} 8, \mathrm{~A} \end{gathered}$	MOV A, @RLO +d8											
+1	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{~A}, \mathrm{ADB} \end{aligned}$	MOV ADB, A														
+2	MOV	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{SSB}, \mathrm{~A} \end{aligned}$	MOVX A, @RL1 + d8	$\begin{gathered} \text { MOV @RL1 } \\ +\mathrm{dB}, \mathrm{~A} \end{gathered}$	MOV A, @RL1 + d											
+3	$\begin{array}{ll} \mathrm{MOV} \\ \mathrm{~A}, \mathrm{USB} \end{array}$	$\underset{\text { MSB, A }}{\mathrm{MOV}}$														
+4	MOV	MOV DPR, A	MOVX A @RL2 + d8	$\begin{array}{r} \text { MOV @LL } \\ +\mathrm{d} 8, A \end{array}$	MOV A, @RL2 + d8											
+5	$\begin{gathered} \mathrm{MOV} \\ \mathrm{~A}, @ \mathrm{~A} \end{gathered}$	MOV @AL, AH														
+6	MOV	$\begin{aligned} & \operatorname{MOVX} \\ & \mathrm{A}, @ \mathrm{~A} \end{aligned}$	MOVX A @RL3 + d8	$\begin{array}{r} \text { MOV @RL } \\ +\mathrm{d} 8, A \end{array}$	MOV A, @RL3 +d 8											
+7	ROLC A	RORC A														
+8				$\begin{array}{\|l\|l\|} \text { Movw @RL } \\ 0+d 8, \end{array}$	@RLO + d MOVW A,			MUL A								
+9								MULW								
+A				$\begin{aligned} & \text { MOVW @RL } \\ & 1+\mathrm{dB}, \mathrm{~A} \end{aligned}$	@RL1 + d8 MOVW A,			DIVU A								
+B																
+C	$\underset{\mathrm{A}, \mathrm{RO}}{\mathrm{LSLW}}$	$\begin{array}{r} \text { LSLL } \mathrm{RO} \end{array}$	LSL A, RO		MOVW A, $@ R L 2+d 8$											
+D	$\begin{array}{\|c} \hline \text { MOVW } \\ \text { A, @A } \end{array}$	MOVW @AL, AH	NRML A, R0													
+E	ASRW A, R0	$\begin{aligned} & \text { ASRL } \\ & \text { A, R0 } \end{aligned}$	$\begin{aligned} & \text { ASR } \\ & \text { A, RO } \end{aligned}$	$\begin{gathered} \text { MOVW@RL } \\ 3+d 8, ~ \end{gathered}$	MOVW A, @RL3 + d8											
+F	$\underset{\text { A, RO }}{\text { LSRW }}$	$\begin{array}{\|l\|} \hline \text { LSRL } \\ \text { A, RO } \\ \hline \end{array}$	$\underset{\text { A, RO }}{2}$													

Table 26 ea Instruction (9) [Byte $1=78 \mathrm{H}]$

MB90520 Series

ORDERING INFORMATION

Part number	Package	Remarks
MB90523PFF-G MB90522PFF-G	120-pin Plastic LQFP MB90F523PFF-G	(FPT-120P-M05)

MB90520 Series

PACKAGE DIMENSIONS

120-pin Plastic LQFP (FPT-120P-M05)

(c) 1995 FUJTSU LIMITED F120006S-2C-3

Dimensions in mm (inches)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am- 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

F9808
© FUJITSU LIMITED Printed in Japan

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: *: Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.") Assurance for the MB90V520 is given only for operation with a tool at a power voltage of 3.0 V to 5.5 V , an operating temperature of 0 to 55 degrees centigrade, and an operating frequency of 1 MHz to 16 MHz .

[^1]: R/W: Readable and writable

 - : Unused

 X : Indeterminate
 RESV: Reserved bit

[^2]: * : Interrupt number

[^3]: R/W : Readable and writable - : Unused

 X : Indeterminate

[^4]: R/W : Readable and writable
 R : Read only
 W:Write only

 - : Unused

[^5]: R/W: Readable and writable
 R : Read only
 W:Write only

 - : Unused

 X : Indeterminate
 RESV : Reserved bit

[^6]: R/W: Readable and writable
 R : Read only
 W:Write only

 - : Unused

 X : Indeterminate
 RESV : Reserved bit

[^7]: R/W: Readable and writable

 - : Unused

 X : Indeterminate
 RESV : Reserved bit

