Advance Information

Integrated Relay/Solenoid Driver

MDC3205

- Optimized to Switch 3 V to 5 V Relays from a 5 V Rail
- Compatible with "TX" and "TQ" Series Telecom Relays Rated up to 625 mW at 3 V to 5 V
- Features Low Input Drive Current
- Internal Zener Clamp Routes Induced Current to Ground Rather Than Back to Supply
- Guaranteed Off State with No Input Connection
- Supports Large Systems with Minimal Off-State Leakage
- ESD Resistant in Accordance with the 2000 V Human Body Model
- Provides a Robust Driver Interface Between Relay Coil and Sensitive Logic Circuits

Applications include:

- Telecom Line Cards and Telephony

RELAY/SOLENOID DRIVER SILICON MONOLITHIC CIRCUIT BLOCK

- Industrial Controls
- Security Systems
- Appliances and White Goods
- Automated Test Equipment
- Automotive Controls

This device is intended to replace an array of three to six discrete components with an integrated part. It can be used to switch other 3 to 5 Vdc Inductive Loads such as solenoids and small DC motors.

INTERNAL CIRCUIT DIAGRAM

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	6.0	Vdc
Recommended Operating Supply Voltage	V_{CC}	$2.0-5.5$	Vdc
Input Voltage	$\mathrm{V}_{\text {in }(\mathrm{fwd})}$	6.0	Vdc
Reverse Input Voltage	$\mathrm{V}_{\text {in }(\mathrm{rev})}$	-0.5	Vdc
Output Sink Current - Continuous	I	300	mA
Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation(1) Derate above $25^{\circ} \mathrm{C}$	PD_{D}	625	mW
Thermal Resistance Junction to Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1. FR-5 PCB of $1^{\prime \prime} \times 0.75^{\prime \prime} \times 0.062^{\prime \prime}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Output Zener Breakdown Voltage (@ IT = 10 mA Pulse)	$V_{\text {(BRout) }}$ $V_{\text {(-BRout) }}$	6.4	$\begin{gathered} \hline 6.8 \\ -0.7 \end{gathered}$	7.2	V
Output Leakage Current @ 0 Input Voltage ($\mathrm{V}_{\text {out }}=5.5 \mathrm{Vdc}, \mathrm{V}_{\text {in }}=$ O.C., $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) ($\mathrm{V}_{\text {out }}=5.5 \mathrm{Vdc}, \mathrm{V}_{\text {in }}=0 . \mathrm{C}^{\prime}, \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$)	loo	-	-	$\begin{aligned} & 5.0 \\ & 30 \end{aligned}$	$\mu \mathrm{A}$

ON CHARACTERISTICS

$\begin{aligned} & \text { Input Bias Current } @ V_{\text {in }}=4.0 \mathrm{Vdc} \\ & \quad\left(\mathrm{IO}=250 \mathrm{~mA}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right) \end{aligned}$ $\text { (correlated to a measurement @ } 25^{\circ} \mathrm{C} \text {) }$	lin	-	2.5	-	mAdc
Output Saturation Voltage $\left(\mathrm{IO}=250 \mathrm{~mA}, \mathrm{~V}_{\mathrm{in}}=4.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right)$ (correlated to a measurement @ $25^{\circ} \mathrm{C}$)		-	0.2	0.4	Vdc
Output Sink Current - Continuous $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CE}}=0.4 \mathrm{Vdc}, \mathrm{V}_{\mathrm{in}}=4.0 \mathrm{Vdc}\right)$ (correlated to a measurement @ $25^{\circ} \mathrm{C}$)	IC(on)	250	-	-	mA

TYPICAL APPLICATION-DEPENDENT SWITCHING PERFORMANCE
SWITCHING CHARACTERISTICS

Characteristic	Symbol	V_{CC}	Min	Typ	Max	Units
Propagation Delay Times:						ns
High to Low Propagation Delay; Figures 1, 2 (5.0 V 74 HC 04)	tPHL	5.5	-	55	-	
Low to High Propagation Delay; Figures 1, 2 (5.0 V 74HC04)	tPLH	5.5	-	430	-	
High to Low Propagation Delay; Figures 1, 3 (3.0 V 74HC04)	${ }_{\text {tPHL }}$	5.5	-	85	-	
Low to High Propagation Delay; Figures 1, 3 (3.0 V 74HC04)	tPLH	5.5	-	315	-	
High to Low Propagation Delay; Figures 1, 4 (5.0 V 74LS04)	tPHL	5.5	-	55	-	
Low to High Propagation Delay; Figures 1, 4 (5.0 V 74LS04)	tPLH	5.5	-	2385	-	
Transition Times:						ns
Fall Time; Figures 1, 2 ($5.0 \mathrm{~V} 74 \mathrm{HC04)}$	t_{f}	5.5	-	45	-	
Rise Time; Figures 1, 2 (5.0 V 74 HC 04)	tr_{r}	5.5	-	160	-	
Fall Time; Figures 1, 3 (3.0 V 74HC04)	t_{f}	5.5	-	70	-	
Rise Time; Figures 1, 3 (3.0 V 74HC04)	t_{r}	5.5	-	195	-	
Fall Time; Figures 1, 4 (5.0 V 74LS04)	tf	5.5	-	45	-	
Rise Time; Figures 1, 4 (5.0 V 74LS04)	tr_{r}	5.5	-	2400	-	
Input Slew Rate (1)	$\Delta \mathrm{V} / \Delta \mathrm{t}$ in	5.5	TBD	-	-	V / ms

1. Minimum input slew rate must be followed to avoid overdissipating the device.

Figure 1. Switching Waveforms

Figure 2. A 3.0-V, 200-mW Dual Coil Latching Relay Application with 5.0 V-HCMOS Interface

Figure 3. A 3.0-V, 200-mW Dual Coil Latching Relay Application with 3.0 V-HCMOS Interface

MDC3205

Figure 4. A 3.0-V, 200-mW Dual Coil Latching Relay Application with TTL Interface

Figure 5. Typical 5.0 V, 140 mW Coil Dual Relay Application

TYPICAL OPERATING WAVEFORMS

(Circuit of Figure 5)

Figure 6. 20 Hz Square Wave Input

Figure 8. 20 Hz Square Wave Response

Figure 10. Pulsed Current Gain

Figure 7. 20 Hz Square Wave Response

Figure 9. 20 Hz Square Wave Response

Figure 11. Collector Saturation Region

PACKAGE DIMENSIONS

	NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI	
Y14.5M, 1982.	

CASE 29-04
ISSUE AD

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

MfaxT: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

Mfax is a trademark of Motorola, Inc.
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

