GaAs HEMT Low Noise Amplifier

HITAÇHI

ADE-208-597(Z) 1st. Edition December 1997

Features

- Excellent low noise characteristics. Fmin = 0.8 dB typ. (3 V, 5 mA, 0.9 GHz)
- High associated gain.
 Ga = 18 dB typ. (3 V, 5 mA, 0.9 GHz)
- Small package. (CMPAK-4)

Outline

CMPAK-4

- 1. Source
- 2. Gate
- 3. Source
- 4. Drain

This document may, wholly or partially, be subject to change without notice.

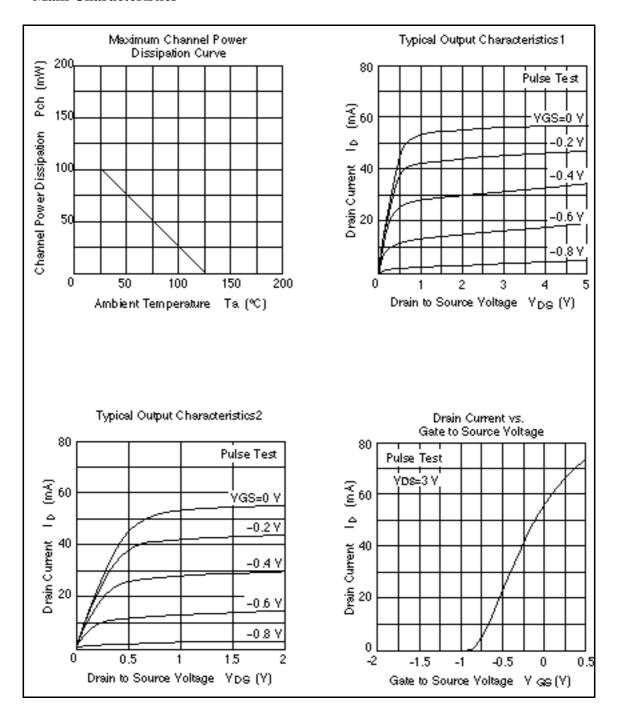
This Device is sensitive to Electro Static Discharge.

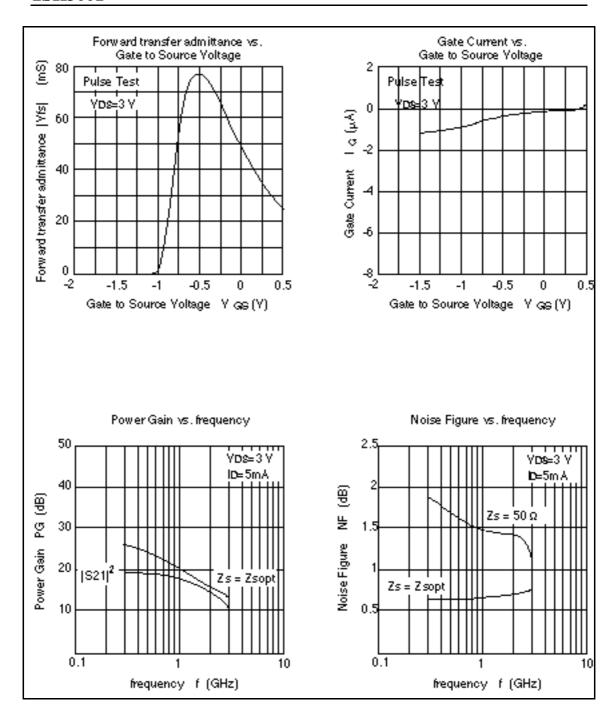
It is recommended to adopt appropriate cautions when handling this transistor.

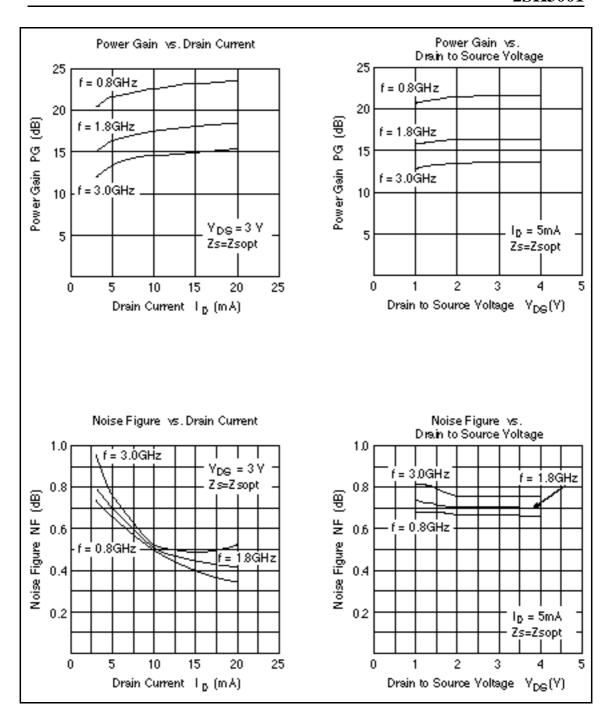
CAUTION

This product use GaAs. Since dust or fume of GaAs is highly poisonous to human body, please do not treat them mechanically in the manner which might expose to the Air. And it should never be thrown out with general industrial or domestic wastes.

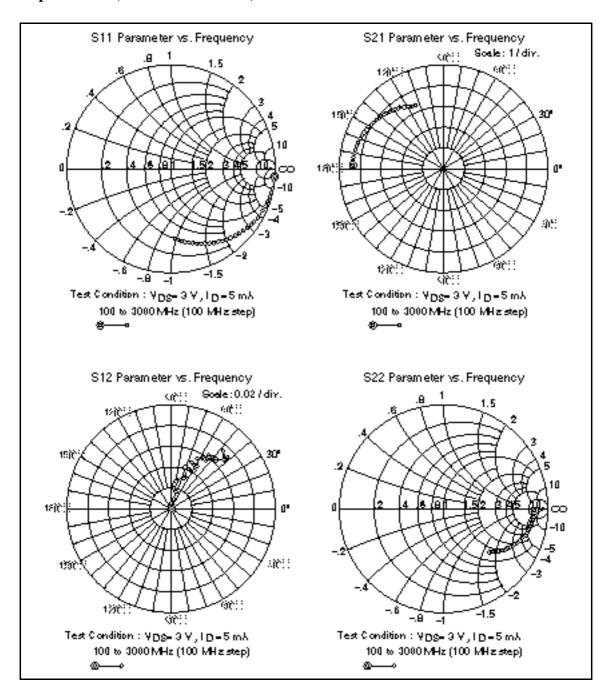
Absolute Maximum Ratings ($Ta = 25^{\circ}C$)

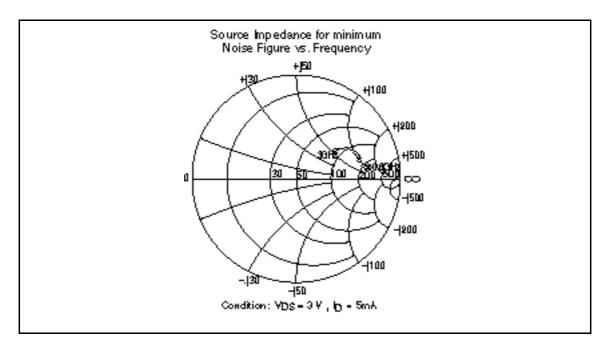

Symbol	Ratings	Unit	
$V_{\scriptscriptstyle DSS}$	6	V	
$V_{\rm GSO}$	-4	V	
V_{GDO}	-4	V	
I _D	20	mA	
Pch	100	mW	
Tch	125	°C	
Tstg	-55 to +125	°C	
	V _{DSS} V _{GSO} V _{GDO} I _D Pch Tch	V _{DSS} 6 V _{GSO} -4 V _{GDO} -4 I _D 20 Pch 100 Tch 125	VDSS 6 V VGSO -4 V VGDO -4 V ID 20 mA Pch 100 mW Tch 125 °C


Electrical Characteristics (Ta = 25° C)


Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Gate to source leak current	I _{GSS}	_	_	-20	μΑ	$V_{GS} = -4 \text{ V}, V_{DS} = 0$
Gate to source cutoff voltage	$V_{GS(off)}$	-0.5	_	-1.5	V	$V_{DS} = 3V, I_{D} = 100 \mu A$
Drain to source current	I _{DSS}	35	50	70	mA	$V_{DS} = 3 \text{ V}, V_{GS} = 0$
						Pulse test
Forward transfer admittance	y _{fs}	40	60	_	mS	$V_{DS} = 3 \text{ V}, I_{D} = 10 \text{ mA}$
						f = 1 kHz
Power Gain	PG	15.0	18.0	_	dB	$V_{DS} = 3 \text{ V}, I_{D} = 5 \text{ mA}$
						f = 0.9 GHz
Noise Figure	NF	_	0.8	1.2	dB	_
Associated gain	Ga	_	21.0	_	dB	$V_{DS} = 3 \text{ V}, I_{D} = 5 \text{ mA}$
						f = 0.8 Ghz, Zs = Zsopt
Minimum noise figure	Fmin	_	0.7	_	dB	_
Associated gain	Ga	_	16.0	_	dB	$V_{DS} = 3 \text{ V}, I_{D} = 5 \text{ mA}$
						f = 1.8 Ghz, Zs = Zsopt
Minimum noise figure	Fmin	_	0.75	_	dB	_

Note: Marking of 2SK3001 is "YX-"

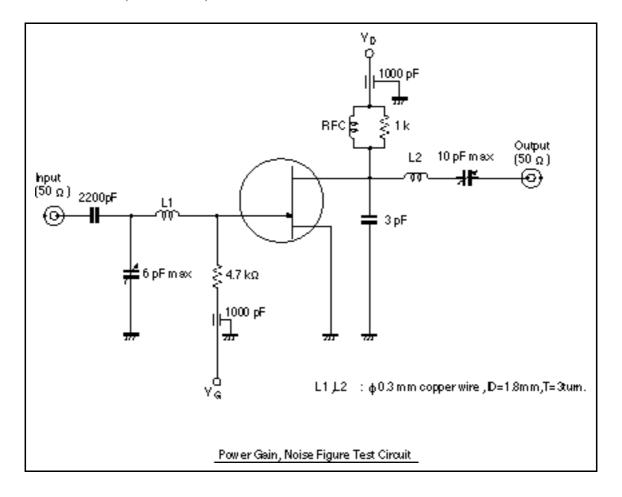

Main Characteristics


Sparameter (Smith Plot Zo=50W)

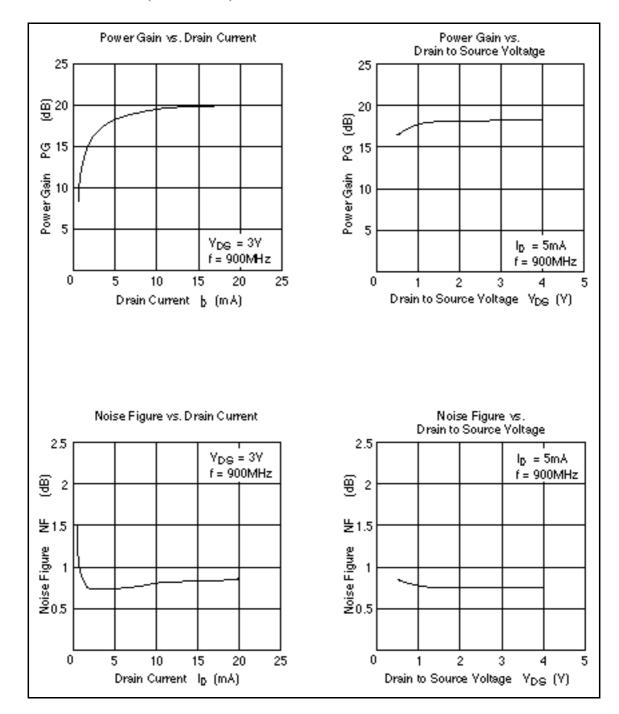
 $\textbf{Sparameter} \; (V_{DS} = 3 \; V, \, I_D = 5 \; mA, \, Zo = 50 \hspace{0.5cm})$

Freq (GHz)	S11 (Mag)	S11 (Ang)	S21 (Mag)	S21 (Ang)	S12 (Mag)	S12 (Ang)	S22 (Mag)	S22 (Ang)
0.1	0.998	-4.1	4.4	177.6	0.001	49.2	0.875	-1.2
0.2	0.995	-6.5	4.4	175.1	0.005	86.3	0.869	-3.1
0.3	0.993	-10.9	4.4	172.6	0.010	75.2	0.869	- 5.1
0.4	0.990	-13.4	4.3	170.2	0.017	73.6	0.863	-6.7
0.5	0.989	-14.5	4.3	169.1	0.015	82.9	0.865	- 7.1
0.6	0.981	-17.0	4.3	166.3	0.020	81.6	0.859	-9.0
0.7	0.976	-20.0	4.3	163.9	0.026	73.7	0.856	-10.6
0.8	0.965	-23.5	4.3	161.4	0.025	74.3	0.851	-12.1
0.9	0.956	-28.2	4.2	159.0	0.032	76.5	0.834	-14.0
1.0	0.949	-31.1	4.2	156.4	0.029	75.2	0.837	-15.4
1.1	0.942	-33.9	4.2	154.3	0.036	65.0	0.830	-16.8
1.2	0.930	-36.3	4.1	152.0	0.039	67.0	0.819	-18.4
1.3	0.918	-39.5	4.1	149.6	0.037	65.4	0.810	-20.1
1.4	0.903	-42.2	4.0	147.4	0.042	61.2	0.800	-21.8
1.5	0.895	-44.8	4.0	145.1	0.045	65.9	0.789	-23.1
1.6	0.882	-47.8	3.9	143.1	0.046	60.5	0.779	-24.4
1.7	0.869	-50.9	4.0	140.7	0.053	61.8	0.768	-26.0
1.8	0.856	-53.3	3.9	138.3	0.056	57.4	0.753	-27.2
1.9	0.843	-55.6	3.8	136.7	0.055	56.8	0.747	-28.7
2.0	0.826	-59.0	3.9	133.9	0.059	53.8	0.736	-30.4
2.1	0.814	-61.8	3.8	132.3	0.059	52.9	0.720	-31.5
2.2	0.800	-64.0	3.7	130.0	0.062	48.2	0.710	-32.6
2.3	0.785	-67.0	3.7	128.1	0.059	51.5	0.700	-34.4
2.4	0.767	-69.8	3.6	126.8	0.063	48.5	0.692	-35.4
2.5	0.751	-72.4	3.6	123.5	0.065	47.6	0.676	-36.7
2.6	0.742	-75.0	3.5	123.3	0.065	47.4	0.661	-37.9
2.7	0.719	-78.3	3.5	120.0	0.063	48.7	0.652	-39.2
2.8	0.710	-80.3	3.4	118.9	0.074	46.7	0.645	-40.0
2.9	0.689	-82.8	3.3	116.9	0.070	41.0	0.630	-41.4
3.0	0.675	-85.6	3.4	116.0	0.074	41.8	0.618	-43.7

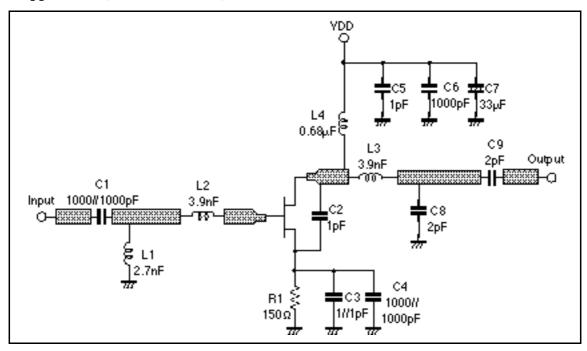
optimize
$$(V_{DS} = 3 \text{ V}, I_D = 5\text{mA})$$

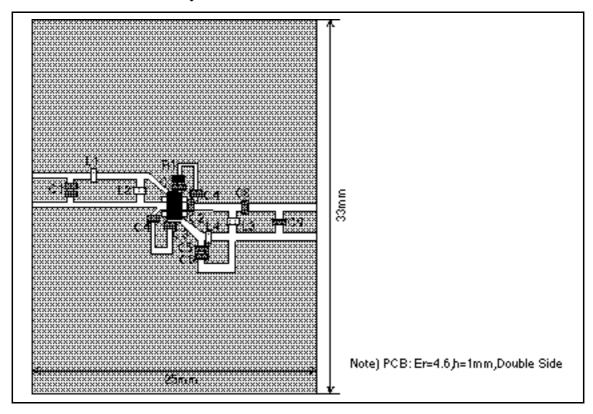

Noise parameter ($V_{DS} = 3 \text{ V}, I_D = 5 \text{ mA}$)

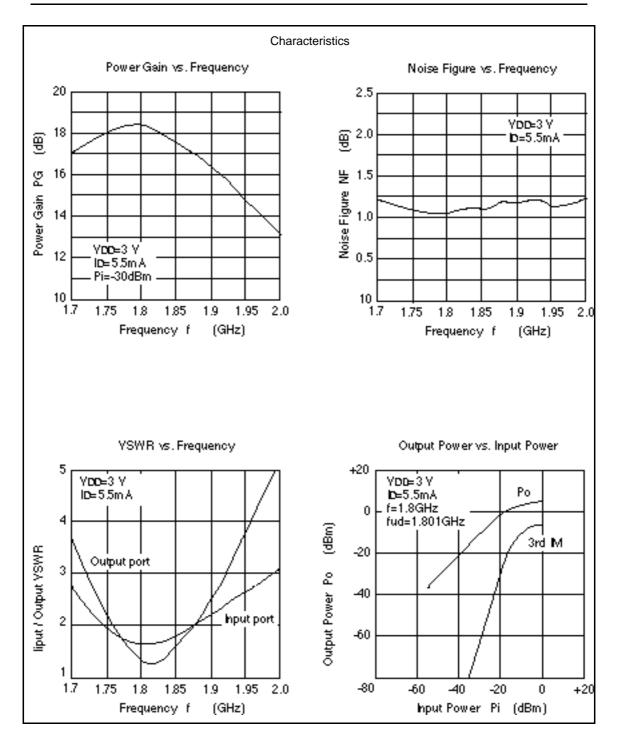
Freq (GHz)	Fmin ^{⁺1} (dB)	Ga (dB)	Gopt (Mag)	Gopt (Ang)	RN ()	NF 50 *2 (dB)	S21 2 ^{*2} (dB)	S21 ^{*2} -
0.8	0.67	21.7	0.69	8.8	19.1	1.53	18.2	4.26
0.9	0.67	21.0	0.68	9.8	18.7	1.50	18.0	4.24
1.0	0.67	20.3	0.66	10.7	18.4	1.48	17.5	4.19
1.5	0.69	17.6	0.64	15.7	17.5	1.44	16.0	3.99
1.7	0.70	16.8	0.64	17.8	17.4	1.44	15.3	3.92
1.8	0.71	16.4	0.64	18.9	17.3	1.44	15.0	3.88
1.9	0.71	16.1	0.64	20.1	17.1	1.44	14.8	3.85
2.0	0.72	15.8	0.64	21.3	17.0	1.44	14.2	3.76
2.2	0.72	15.2	0.63	23.8	16.6	1.43	13.6	3.69
2.5	0.74	14.6	0.60	28.1	15.6	1.37	12.3	3.50
2.7	0.74	14.2	0.56	31.3	14.6	1.30	11.9	3.44
3.0	0.76	13.6	0.47	36.7	12.6	1.15	11.1	3.33


note 1. Input matched for minimum noise figure, Output for maximum gain.

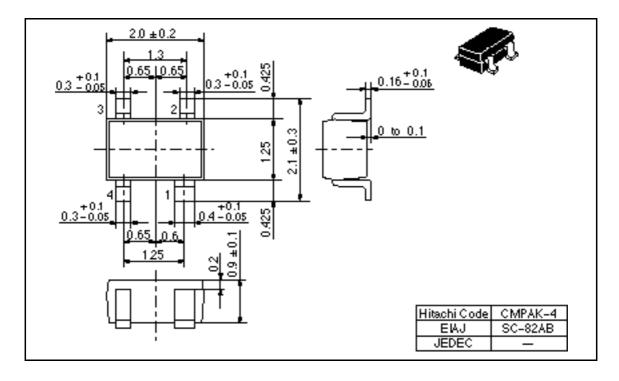
2. Zs = ZL = 50


Test Fixture (f = 0.9 GHz)


Characteristics (Test Fixture)



Application (f = 1.8 GHz LNA)


PCB Pattern & Parts Layouts

Package Dimensions

Unit: mm

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

HITACHI

Hitachi, Ltd.

Semiconductor & IC Div. Nippon Bidg., 2-5-2, Ohte-mechi, Chiyode-ku, Tokyo 100, Japan Tat Tokyo (03, 3270-2111 Fax: (03, 3270-5109

For Jurther in forms I on write to:

Hitachi Semiconductor (America) Inc 2000 Sierra Point Parkway Briabana, CA. 94005-4897 U.S.A. Tat 800-285-4604 Fax:303-297-0447 Hitechi Burope GmbH Continentel Burope Dornecher Streise 3 D-85822 Feldkinchen München Test 08949 94 8040 Fext 08949 29 30-00 Hitechi Burope Ltd.
Bedtronic Componente Div.
Northern Burope Heedquertere
Whitebrook Penk
Lower Cookhem Roed
Neiderheed
Berkehire SL68YA
United Kingdom
Tet 04628-585000
Fex: 04628-585160

Hitechi Asia Pte. Ltd 45 Collyer Quey \$20-00 Hitechi Tower Singapore 049348 Tet 535-2400 Fex: 535-4533

Hitschi Asia (Hong Kong) Ltd.
Unit 705, North Tower,
World Finance Carting
Herbour City, Carton Road
Teim She Teu, Kowloon
Hong Kong
Tet 27350218
Fex: 27306074

Copyright @Hitechi, Ltd., 1997. All rights reserved. Printed in Japan.