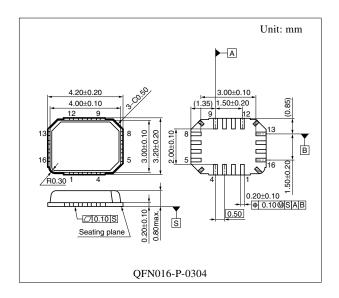
AN6105FHN

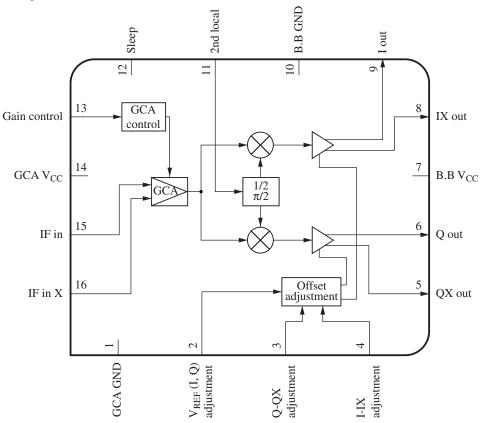
Quadrature demodulation IC for CDMA system mobile telephone

■ Overview

The AN6105FHN is a quadrature demodulation IC for a CDMA system mobile telephone, incorporating a reception IF for IS-95 and GCA plus quadrature demodulator.


■ Features

Current consumption: 11 mA typ.
Gain control range: +85 dB to -5 dB
High linearity control characteristic: ±3 dB


• Temperature dependency: ±3 dB

Applications

• Cellular telephone (IS-95)

■ Block Diagram

Panasonic 1

Pin Descriptions

Pin No.	Description	Pin No.	Description
1	GND (GCA)	9	I output
2	I, Q output operating point adjustment	10	GND (base band)
3	Q operating point offset adjustment	11	Local signal input
4	I operating point offset adjustment	12	Sleep
5	Q output	13	Gain adjustment
6	Q output	14	Supply voltage (GCA)
7	Supply voltage (base band)	15	Signal input (+)
8	Ī output	16	Signal input (–)

■ Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC}	4.2	V
Supply current	I _{CC}	24	mA
Power dissipation *2	P_{D}	100	mW
Operating ambient temperature *1	T _{opr}	-30 to +85	°C
Storage temperature *1	T_{stg}	-55 to +125	°C

Note) *1: Except for the operating ambient temperature and storage temperature, all ratings are for $T_a = 25$ °C.

■ Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V _{CC}	2.55 to 4.00	V

■ Electrical Characteristics at $T_a = 25$ °C

 $\label{eq:continuous} Unless otherwise specified, V_{CC} = 2.8~V,~V_{SLP} = 2.8~V,~V_{GC} = 2.5~V, V_{LO} = -10~dBm;~f = 223.7~MHz, V_{IN};~f = 112.35~MHz, V_I~,~V_{IX}~,~V_Q~,~V_{QX};~f = 500~kHz,~a~measurement~in~high~impedance~be~made~for~V_I~,~V_{IX}~,~V_Q~and~V_{QX}~.$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Current consumption	I _{TOT}	V_{IN} , V_{LO} : No input	6	11	15	mA
Current consumption (sleep)	I_{SLP}	V_{IN} , V_{LO} : No input, $V_{12} = 0 V$	_	0	10	μA
Conversion gain 1	G _{C(1)}	Conversion gain between V_{IN} and V_{I} $V_{GC} = 2.5 \ V, \ V_{IN} = 5 \ dB\mu V$	80	85	90	dB
Conversion gain 2	G _{C(2)}	Conversion gain between V_{IN} and V_{I} $V_{GC} = 0.1 \ V, \ V_{IN} = 85 \ dB\mu V$	-18	-12	-9	dB
IQ maximum output	V _{IQ}	Output level of V_I , V_{IX} , V_Q and V_{QX} $V_{GC} = 2.5 \ V, \ V_{IN} = 40 \ dB\mu V$	1	1.8	_	V[p-p]
Noise figure	NF	$V_{GC} = 2.5 \text{ V}$	_	7	8.5	dB

2 Panasonic

^{*2:} P_D is the value at $T_a = 85^{\circ}\text{C}$ without a heatsink. Use this device within the range of allowable power dissipation referring to "Technical Data".

■ Electrical Characteristics at T_a = 25°C (continued)

Unless otherwise specified, V_{CC} = 2.8 V, V_{SLP} = 2.8 V, V_{GC} = 2.5 V, V_{LO} = -10 dBm: f = 223.7 MHz, V_{IN} : f = 112.35 MHz, V_{I} , V_{IX} , V_{Q} , V_{QX} : f = 500 kHz, a measurement for high impedance be made for V_{I} , V_{IX} , V_{Q} and V_{QX} .

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input IP3	IIP3	Input IP3 value at 60 dB ± 1 dB of conversion gain	65	69	_	dBμV
Gain adjustment sensitivity	β_{GCA}	Gain variation at $V_{GC} = 0.5 \text{ V}$ to 2.5 V	42	45	48	dB/V
Quadrature demodulation error	IQ _{ERR}	$V_{GC} = 1.5 \text{ V}, V_{IN} = 47 \text{ dB}\mu\text{V}$	_	-25	-20.5	dB
Local signal input level	V _{LO}		-20	-10	-7	dBm
Sleep control (low)	V _{SLP(1)}	Voltage to get I _{TOT} of 10 μA and less	_	_	0.2	V
Sleep control (high)	V _{SLP(2)}	Voltage for an operating mode	2.3	_	_	V
Gain adjustment voltage	V _{GC}		0.1	_	2.6	V
IQ operating point voltage	V _{IQ}	DC operating point voltage at no adjustment for IQ output (pin 5, pin 6, pin 8 and pin 9)	1.2	1.5	1.7	V
IQ operating point deviation	$\Delta { m V}_{ m IQ}$	DC operating point voltage difference between $V_{I^-}V_{IX}$ and $V_{Q^-}V_{QX}$ (at no adjustment)	-250	0	250	mV

• Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
IQ output deviation	_ · IQ		- 0.8	0	0.8	dB
		(differential),				
		$V_{GC} = 1.5 \text{ V}, V_{IN} = 47 \text{ dB}\mu\text{V}$				
IQ output phase difference	$\Delta heta_{ m IQ}$	Phase difference between IQ signals	85	90	95	deg
		(differential),				
		$V_{GC}=1.5~V,~V_{IN}=47~dB\mu V$				

■ Terminal Equivalent Circuits

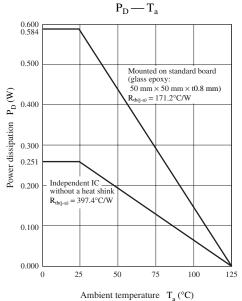
Pin No.	Equivalent circuit	Description	DC voltage (V)
1		GND (GCA): Ground pin of GCA system.	_
2, 3, 4	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	Pin 2: I, Q output operating point adjustment: Pin to adjust an operating point voltage of IQ output (pin 5, pin 6, pin 8 and pin 9).; Pin3: Q operating point offset adjustment: Pin to adjust an offset voltage between Q, Q output (pin 5, pin 6).; Pin 4: I operating point offset adjustment: Pin to adjust an offset voltage between I, I output (pin 8, pin 9).	1.9

Panasonic

■ Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	DC voltage (V)
5, 6	V _{CC} Pin 5, 6	Pin 5: \overline{Q} output: Pin to output the \overline{Q} signal.; Pin 6: Q output: Pin to output the Q signal.	1.5
7	_	Supply voltage (base band): Supply voltage pin of base band system.	2.8
8,9	V _{CC} Pin 8, 9	Pin 8: Ī output: Pin to output the Ī signal.; Pin 9: I output: Pin to output the I signal.	1.5
10	_	GND (base band): Ground pin of base band system.	_
11	V_{CC}	Local signal input: Input pin of local signal for IQ demodulation.	2.7
12	150 kΩ	Sleep: Operating mode: Connect this pin to supply voltage pin. Sleep mode: Connect to GND.	

■ Terminal Equivalent Circuits (continued)

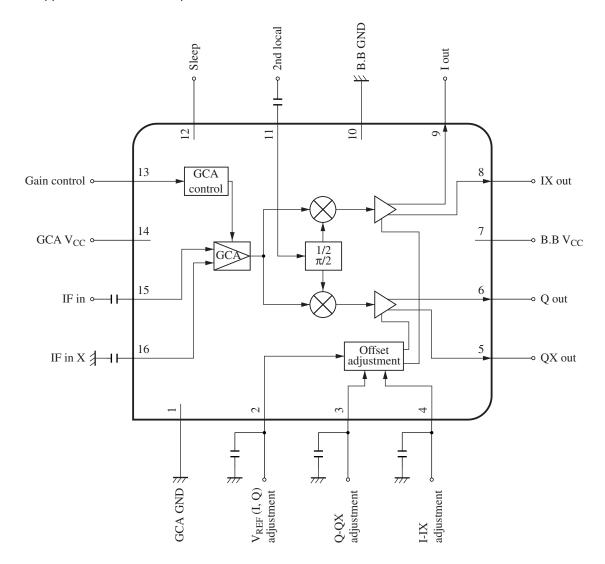

Pin No.	Equivalent circuit	Description	DC voltage (V)
13	V _{CC} 8 64 kΩ 56 kΩ 777	Gain adjustment: Adjusts gain. Possible to apply voltage from 0 to a supply voltage.	0
14	_	Supply voltage (GCA): Supply voltage pin of GCA system.	_
15, 16	V_{CC} $\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pin 15: Signal input (+): Pin to input IF signal. Impedance matching is required.; Pin 16: Signal input (–): AC grounding with a capacitor.	1.2

■ Usage Note

There are two systems of a supply voltage pin for this device. (Pin 7, pin 14) Apply the same voltage simultaneously to these two pins on use. (Keep either of them from being off.)

■ Technical Data

• P_D — T_a curves of QFN016-P-0304



.

Panasonic

5

■ Application Circuit Example

6

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 - Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 - Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.