Interface Circuits Advance Information/ Preliminary Data CA3250, CA3251 ## T-43-25 1 # General-Purpose High-Current N-P-N Transistor Arrays CA3251 - Common-Emitter Array CA3250 - Common-Collector Array #### Festures - 8 transistors permit a wide range of applications in either a common-emitter (CA3251) or common-collector (CA3250) configuration - High Ic: 100 mA max. - Low V_{CEsst} (at 50 mA): 0.4 V typ. RCA-CA3250• and CA3251• consist of eight high-current (to 100 mA) silicon n-p-n transistors on a common monolithic substrate. The CA3251 is connected in a common-emitter configuration and the CA3250 is connected in a common-collector configuration. •Formerly RCA Development Type Nos.TA11550 and TA11551. #### Applications: Drivers for: Incandescent display devices LED (e.g. RCA-40736R GaAs High-Efficiency Emitting Diode) Relay control Thyristor firing (a) COMMON-COLLECTOR CONFIGURATION (b) COMMON-EMITTER CONFIGURATION Fig. 1 - Functional diagrams of types CA3250 and CA3251. File Number 1684 #### CA3250, CA3251 The CA3250 and CA3251 are capable of directly driving seven-segment and decimal point displays such as incandescent and light-emitting diode (LED). These types are also well-suited for a variety of other drive applications, including relay control and thyristor firing. In some applications, the CA3250 is functionally compatible with the higher power UDN2580A. The CA3251 is functionally compatible with the ULN2800A series and the TD62081AP series. It may be necessary, however, to insert in each base a series resistance to limit the l_{B} to 20 mA. The CA3250 and CA3251 are supplied in an 18-lead dual-inline plastic package (E suffix), and in an 18-lead dual-in-line frit seal ceramic package (F suffix), which includes a separate substrate connection (CA3250 only) for maximum flexibility in circuit design. Both types are also available in chip form (H suffix). #### MAXIMUM RATINGS, Absolute-Maximum Values at TA = 25° C | The following ratings apply for each transistor in the device: COLLECTOR-TO-EMITTER VOLTAGE (Vogo) | | |---|-----------------------------| | COLLECTOR-TO-EMITTER VOLTAGE (VCEO) | 20 V | | COLLECTOR-TO-BASE VOLTAGE (VCBO) | 20 V | | COLLECTOR-TO-BASE VOLTAGE (Vcso). COLLECTOR-TO-SUBSTRATE VOLTAGE (Vcso)* | 5 V | | EMITTER-TO-BASE VOLTAGE (VEBO) | 100 mA | | COLLECTOR-TO-SUBSTRATE VOLTAGE (Vcio)* EMITTER-TO-BASE VOLTAGE (VEBO) COLLECTOR CURRENT (Ic) BASE CURRENT (Ia) | | | BASE CURRENT (Is) | | | POWER DISSIPATION: | 500 mW | | Any one transistor | | | POWER DISSIPATION: Any one transistor Total Package Above 55° C | Derate Linearly 6.67 mW/° C | | Above 55° C | | | AMBIENT TEMPERATURE RANGE: | -55 to +125° C | | AMBIENT TEMPERATURE RANGE: Operating Storage | -65 to +150° C | | Storage | | | LEAD TEMPERATURE (DURING SOLDERING): At distance 1/16" ± 1/32" (1.59 mm ± 0.79 mm) from case for 10 seconds max | | | At distance 1/16" \pm 1/32" (1.59 mm \pm 0.79 mm) from case for 10 seconds max | | | | | ^{*} The collector of each transistor of the CA3250 and CA3251 is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transistors and provide normal transistor action. To avoid undesired coupling between transistors, the substrate terminal (10) of the CA3250 should be maintained at either DC or signal (AC) ground. A suitable bypass capacitor can be used to establish a signal ground. The substrate of the CA3251 is internally connected to the common-emitter terminal No. 9 to make it more compatible with existing industry types. #### ELECTRICAL CHARACTERISTICS AT TA = 25°C FOR EQUIPMENT DESIGN | CHARACTERISTIC | | | LIMITS | | | | |--|-----------------------|---|--------|------|------|--------------| | | | TEST CONDITIONS | Min. | Тур. | Max. | UNITS | | Collector-to-Emitter Breakdown Voltage | VIBRICES | I _C = 500 μA | 20 | 60 | | ٧ | | Collector-to-Substrate Breakdown Voltage | V _(BR) C(O | $I_{CI} = 500 \ \mu A, I_E = 0, I_B = 0$ | 20 | 60 | I | V | | Collector-to-Emitter Breakdown Voltage | V _{(BR)CEO} | I _C = 1 mA, I _B = 0 | 16 | 24 | | V | | | V _{(BR)EBO} | I _E = 500 μA | 5 | 6.9 | Γ- | V | | Emitter-to-Base Breakdown Voltage | h _{FE} | V _{CE} = 0.5 V, I _C = 30 mA | 30 | 68 | - | | | DC Forward-Current Transfer Ratio | 1175 | V _{CE} = 3 V, I _C = 50 mA | 40 | 70 | _ | T <u> </u> | | Base-to-Emitter Saturation Voltage | VREAL | Ic = 30 mA, I _B = 1 mA | _ | 0.87 | 1.0 | V | | Collector-to-Emitter Saturation Voltage | VCEsat | I _C = 30 mA, I _B = 1 mA | | 0.27 | 0.5 | V | | | V CESSI | Ic = 50 mA, I _B = 5 mA | _ | 0.4 | 0.8 |] _ _ | | Collector-Cutoff-Current | Iceo | V _{CE} = 10 V, I _B = 0 | T - | | 10 | μА | | Collector-Cutoff-Current | Ісво | V _{CB} = 10 V, i _E = 0 | | | 1 | μΑ | 9205-17960 ## CA3250, CA3251 ## TYPICAL STATIC CHARACTERISTICS FOR EACH TRANSISTOR OF TYPES CA3250 AND CA3251 SET DC FORWARD -CURRENT TRANSFER RATIO (hec)+10 BASE-TO-EMITTER SATURATION VOLTS (VBE sat) 0.9 COLLECTOR MILLIAMPERES (IC) Fig. 2 - DC Forward-current transfer ratio as a function of collector current. Fig. 3 - Base-to-emitter saturation voltage as a function of collector current. Fig. 4 - Collector-to-emitter saturation voltage as a function of collector current at TA = 25° C. Fig. 5 - Collector-to-emitter saturation voltage as a function of collector current at T_A = 70° C. ### TYPICAL READ-OUT DRIVER APPLICATIONS 9203-36607 Fig. 6 - Schematic diagram showing one transistor of the CA3251 driving one segment of an incandescent display. Fig. 7 - Schematic diagram showing one transistor of the CA3250 driving a light-emitting diode (LED). 92CS-38610