

Surface Mount RF PIN Low Distortion Attenuator Diodes

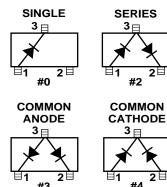
Technical Data

HSMP-381x Series and HSMP-481x Series

Features

- Diodes Optimized for:
 - Low Distortion Attenuating
 - Microwave Frequency Operation
- Surface Mount Packages
 - Single and Dual Versions
 - Tape and Reel Options Available
- Low Failure in Time (FIT) Rate^[1]

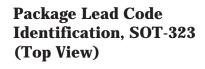
Note:


1. For more information see the Surface Mount PIN Reliability Data Sheet.

Description/Applications

The HSMP-381x series is specifically designed for low distortion attenuator applications. The HSMP-481x products feature ultra low parasitic inductance in the SOT-23 and SOT-323 packages. They are specifically designed for use at frequencies which are much higher than the upper limit for conventional diodes.

A SPICE model is not available for PIN diodes as SPICE does not provide for a key PIN diode characteristic, carrier lifetime.


Package Lead Code Identification, SOT-23 (Top View)

DUAL CATHODE

3 ⊨

4810

COMMON ANODE

COMMON

Symbol	Parameter		SOT-23	SOT-323	
If	Forward Current (1 µs Pulse)	Amp	1	1	
P _{IV}	Peak Inverse Voltage	V	Same as V _{BR}	Same as V _{BR}	
Tj	Junction Temperature	°C	150	150	
T _{stg}	Storage Temperature	°C	-65 to 150	-65 to 150	
θ_{jc}	Thermal Resistance ^[2]	°C/W	500	150	

Absolute Maximum Ratings^[1] $T_C = +25^{\circ}C$

Notes:

1. Operation in excess of any one of these conditions may result in permanent damage to the device.

2. $T_C = +25^{\circ}C$, where T_C is defined to be the temperature at the package pins where contact is made to the circuit board.

	Electri	cal Spe	cifica	tions T	$\Gamma_{\mathbf{C}} = +$	25°C (Ea	ach Diod	e)
,	Convent	ional Die	odes					

Part Number HSMP-	Package Marking Code	Lead Code	Configuration	Minimum Breakdown Voltage V _{BR} (V)	Maximum Total Resistance R _T (Ω)	Maximum Total Capacitance C _T (pF)	Minimum High Resistance R _H (Ω)	Maximum Low Resistance R _L (Ω)
3810	E0 ^[1]	0	Single	100	3.0	0.35	1500	10
3812	E2[1]	2	Series					
3813	E3[1]	3	Common Anode					
3814	E4[1]	4	Common Cathode					
381B	E0 ^[2]	В	Single					
381C	E2[2]	С	Series					
381E	E3 ^[2]	Е	Common Anode					
381F	E4[2]	F	Common Cathode					
Test Cor	nditions			$\label{eq:VR} \begin{split} V_R &= V_{BR} \\ Measure \\ I_R &\leq 10 \ \mu A \end{split}$	I _F = 100 mA f = 100 MHz	10	I _R = 0.01 mA f = 100 MHz	I _F = 20 mA f= 100 MHz

High Frequency (Low Inductance, 500 MHz - 3 GHz) PIN Diodes

Part Number HSMP-	Package Marking Code	Lead Code	Configuration	Minimum Breakdown Voltage V _{BR} (V)	Maximum Series Resistance R _S (Ω)	Typical Total Capacitance C _T (pF)	Maximum Total Capacitance C _T (pF)	Typical Total Inductance L _T (nH)
4810 481B	EB EB	B[1] B[2]	Dual Cathode Dual Cathode	100	3.0	0.35	0.4	1.0
Test Conditions			$V_R = V_{BR}$ Measure $I_R \le 10 \ \mu A$	I _F = 100 mA	$\begin{array}{l} V_R = 50 \ V \\ f = 1 \ MHz \end{array}$	$V_{R} = 50 V$ f = 1 MHz $V_{R} = 0 V$	f = 500 MHz – 3 GHz	

Notes:

Package marking code is white.
Package laser marked.

Part Number HSMP-Series Resistand R _S (Ω)		Carrier Lifetime τ (ns)	Reverse Recovery Time T _{rr} (ns)	Total Capacitance C _T (pF)	
381x	75	1500	300	0.27 @ 50 V	
Test Conditions	Test Conditions $I_F = 1 \text{ mA}$ f = 100 MHz		$\begin{array}{l} V_{\rm R} = 10 \ V \\ I_{\rm F} = 20 \ m{\rm A} \\ 90\% \ {\rm Recovery} \end{array}$	f = 1 MHz	

Typical Parameters at $T_c = 25^{\circ}C$

Typical Parameters at $T_C = 25^{\circ}C$ (unless otherwise noted), Single Diode

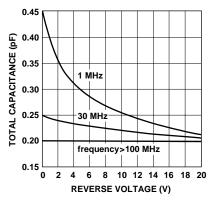


Figure 1. RF Capacitance vs. Reverse Bias.

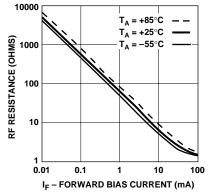


Figure 2. RF Resistance vs. Forward Bias Current.

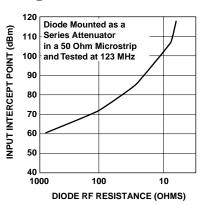


Figure 3. 2nd Harmonic Input Intercept Point vs. Diode RF Resistance.

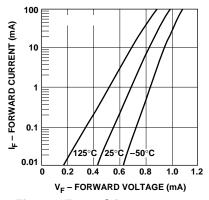


Figure 4. Forward Current vs. Forward Voltage.

Typical Applications for Multiple Diode Products

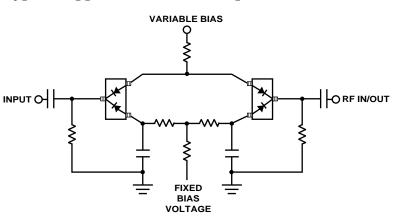
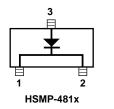



Figure 5. Four Diode π Attenuator. See Application Note 1048 for Details.

Typical Applications for HSMP-481x Low Inductance Series

Microstrip Series Connection for HSMP-481x Series

In order to take full advantage of the low inductance of the HSMP-481x series when using them in series applications, both lead 1 and lead 2 should be connected together, as shown in Figure 7.

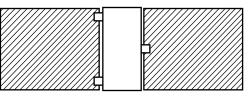


Figure 6. Internal Connections.

Figure 7. Circuit Layout.

Microstrip Shunt Connections for HSMP-481x Series

In Figure 8, the center conductor of the microstrip line is interrupted and leads 1 and 2 of the HSMP-481x series diode are placed across the resulting gap. This forces the 1.5 nH lead inductance of leads 1 and 2 to appear as part of a low pass filter, reducing the shunt parasitic inductance and increasing the maximum available attenuation. The 0.3 nHof shunt inductance external to the diode is created by the via holes, and is a good estimate for 0.032" thick material.

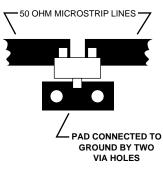


Figure 8. Circuit Layout.

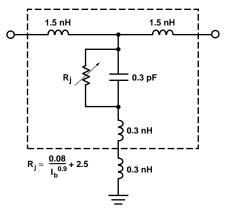


Figure 9. Equivalent Circuit.

Typical Applications for HSMP-481x Low Inductance Series (continued)

Co-Planar Waveguide Shunt Connection for HSMP-481x Series

Co-Planar waveguide, with ground on the top side of the printed circuit board, is shown in Figure 10. Since it eliminates the need for via holes to ground, it offers lower shunt parasitic inductance and higher maximum attenuation when compared to a microstrip circuit.

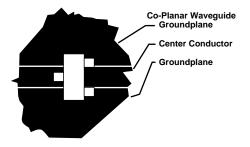


Figure 10. Circuit Layout.

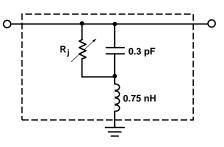
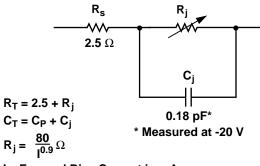



Figure 11. Equivalent Circuit.

Equivalent Circuit Model HSMS-381x Chip*

I = Forward Bias Current in mA

*See AN1124 for package models.

Assembly Information SOT-323 PCB Footprint

A recommended PCB pad layout for the miniature SOT-323 (SC-70) package is shown in Figure 12 (dimensions are in inches). This layout provides ample allowance for package placement by automated assembly equipment without adding parasitics that could impair the performance.

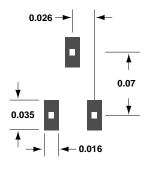


Figure 12. PCB Pad Layout (dimensions in inches).

SOT-23 PCB Footprint

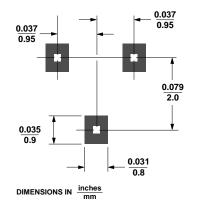


Figure 13. PCB Pad Layout.

SMT Assembly

Reliable assembly of surface mount components is a complex process that involves many material, process, and equipment factors, including: method of heating (e.g., IR or vapor phase reflow, wave soldering, etc.) circuit board material, conductor thickness and pattern, type of solder alloy, and the thermal conductivity and thermal mass of components. Components with a low mass, such as the SOT-323/-23 package, will reach solder reflow temperatures faster than those with a greater mass.

Agilent's diodes have been qualified to the time-temperature profile shown in Figure 14. This profile is representative of an IR reflow type of surface mount assembly process.

After ramping up from room temperature, the circuit board with components attached to it (held in place with solder paste) passes through one or more preheat zones. The preheat zones increase the temperature of the board and components to prevent thermal shock and begin evaporating solvents from the solder paste. The reflow zone briefly elevates the temperature sufficiently to produce a reflow of the solder.

The rates of change of temperature for the ramp-up and cooldown zones are chosen to be low enough to not cause deformation of the board or damage to components due to thermal shock. The maximum temperature in the reflow zone (T_{MAX}) should not exceed 235°C.

These parameters are typical for a surface mount assembly process for Agilent diodes. As a general guideline, the circuit board and components should be exposed only to the minimum temperatures and times necessary to achieve a uniform reflow of solder.

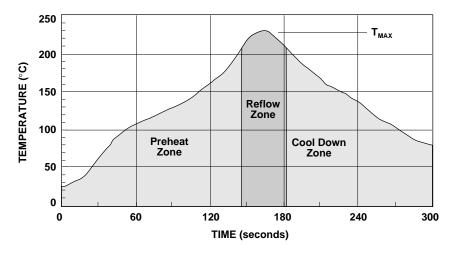
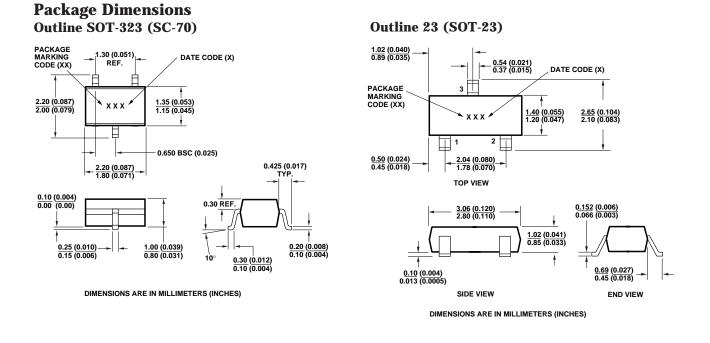



Figure 14. Surface Mount Assembly Profile.

6

Package Characteristics

Lead Material	. Copper (SOT-323); Alloy 42 (SOT-23)
Lead Finish	
Maximum Soldering Temperature	260°C for 5 seconds
Minimum Lead Strength	
Typical Package Inductance	2 nH
Typical Package Capacitance	0.08 pF (opposite leads)

Ordering Information

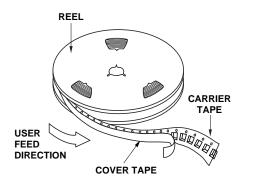
Specify part number followed by option. For example:

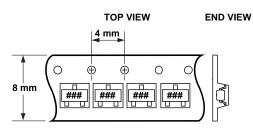
H<u>SMP</u> - <u>381x</u> - <u>XXX</u>

Bulk or Tape and Reel Option Part Number; x = Lead Code Surface Mount PIN

Option Descriptions

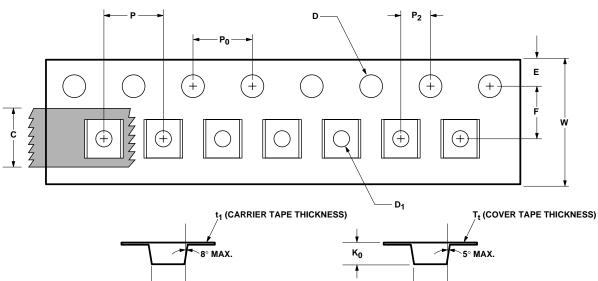
-BLK = Bulk, 100 pcs. per antistatic bag -TR1 = Tape and Reel, 3000 devices per 7" reel


-TR2 = Tape and Reel, 10,000 devices per 13" reel


Tape and Reeling conforms to Electronic Industries RS-481, "Taping of Surface Mounted Components for Automated Placement."

7

Device Orientation



Note: "###" represents Package Marking Code, Date Code.

--−B₀-->

Tape Dimensions For Outline SOT-323 (SC-70 3 Lead)

	DESCRIPTION	SYMBOL	SIZE (mm)	SIZE (INCHES)
CAVITY LENGTH		A ₀	$\textbf{2.24} \pm \textbf{0.10}$	0.088 ± 0.004
	WIDTH	Bo	$\textbf{2.34} \pm \textbf{0.10}$	0.092 ± 0.004
	DEPTH	K ₀	1.22 ± 0.10	0.048 ± 0.004
	PITCH	P	4.00 ± 0.10	0.157 ± 0.004
	BOTTOM HOLE DIAMETER	D ₁	1.00 + 0.25	0.039 + 0.010
PERFORATION	DIAMETER	D	$\textbf{1.55} \pm \textbf{0.05}$	0.061 ± 0.002
	PITCH	Po	4.00 ± 0.10	0.157 ± 0.004
	POSITION	E	$\textbf{1.75} \pm \textbf{0.10}$	0.069 ± 0.004
CARRIER TAPE	WIDTH	w	8.00 ± 0.30	0.315 ± 0.012
	THICKNESS	t ₁	$\textbf{0.255} \pm \textbf{0.013}$	0.010 ± 0.0005
COVER TAPE	WIDTH	С	$\textbf{5.4} \pm \textbf{0.10}$	0.205 ± 0.004
	TAPE THICKNESS	т _t	$\textbf{0.062} \pm \textbf{0.001}$	0.0025 ± 0.00004
DISTANCE	CAVITY TO PERFORATION (WIDTH DIRECTION)	F	$\textbf{3.50} \pm \textbf{0.05}$	0.138 ± 0.002
	CAVITY TO PERFORATION (LENGTH DIRECTION)	P ₂	$\textbf{2.00} \pm \textbf{0.05}$	0.079 ± 0.002

-A0

www.semiconductor.agilent.com

Data subject to change. Copyright © 1999 Agilent Technologies 5968-5427E (11/99)