

MOS Integrated Circuit

μ PD78P322

16/8-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD78P322 is a version provided by replacing the μ PD75322's internal mask ROM with one-time PROM or EPROM.

Because the one-time PROM version is programmable only once by users, it is ideally suited for small-scale production of many different products, and rapid development and time-to-market of application sets.

The EPROM version is reprogrammable, and suited for the evaluation of systems.

The μ PD78P322K, which is the EPROM version, does not maintain planned reliability when used in mass-produced products. Please use only experimentally or for evaluating functions during trial manufacture.

Functions are described in detail in the following user's manual. Be sure to read it for designing. μ PD78322 User's Manual: IEU-1248

FEATURES

- μPD78322 compatible
 - ullet For mass-production, the μ PD78P322 can be replaced with the μ PD78322 which incorporates mask ROM
- Internal PROM: 16,384 × 8 bits
 - Programmable once only (one-time PROM version without window)
 - Erasable with ultraviolet rays and electrically programmable (EPROM version with window)
- PROM programming characteristics: μPD27C256A compatible
- The μPD78P328 is a QTOP[™] microcontroller

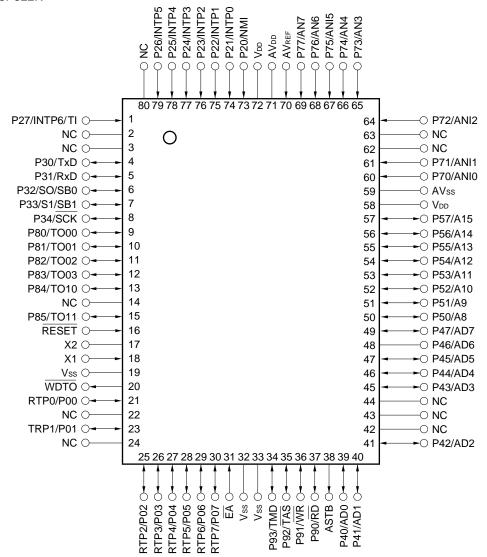
Remark QTOP microcontroller is a general term for microcontrollers which incorporate one-time PROM, and are totally supported by NEC's programming service (from programming to marking, screening, and verification).

ORDERING INFORMATION

Part Number		Package	Internal ROM	Quality Grade
	μPD78P322GF-3B9	80-pin plastic QFP (14 × 20 mm)	One-time PROM	Standard
	μ PD78P322GJ-5BJ	74-pin plastic QFP (20 \times 20 mm)	One-time PROM	Standard
	μ PD78P322L	68-pin plastic QFJ (950 $ imes$ 950 mils)	One-time PROM	Standard
	μ PD78P322K	80-pin ceramic WQFN	EPROM	Not applicable
	μ PD78P322KC	68-pin ceramic WQFN	EPROM	Standard
	μ PD78P322KD	74-pin ceramic WQFN	EPROM	Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

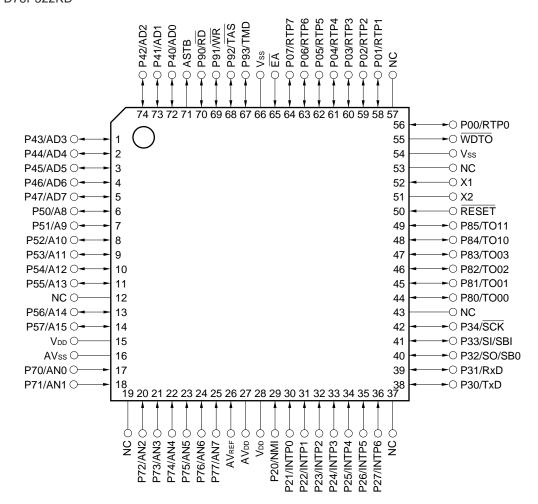
Functions common to the one-time PROM and EPROM versions are referred to as PROM functions throughout this document.


The information in this document is subject to change without notice.

Document No. U10435EJ5V0DS00 (5th edition) (Previous No. IC-2485)
Date Published Printed in Japan

PIN CONFIGURATIONS (Top View)

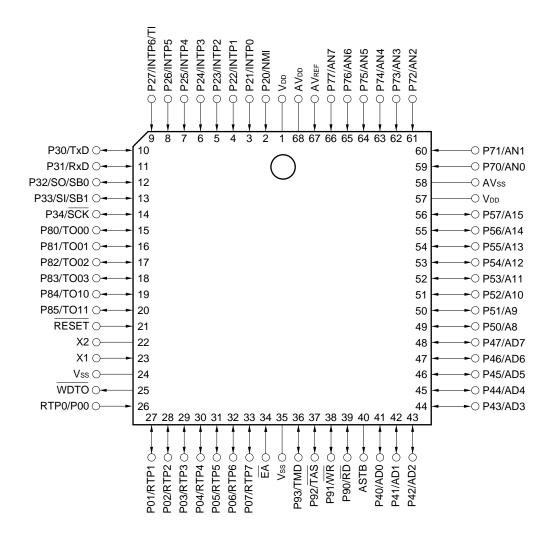
- (1) Normal operating mode
 - 80-pin plastic QFP (14 \times 20 mm) μ PD78P322GF-3B9
 - 80-pin ceramic WQFN μPD78P322K



Caution Connect NC pins to Vss as a measure against noise (can leave open).

Remark These pins are compatible with the μ PD78322GF pins.

The μ PD78P322K does not maintain planned reliability when used in mass-produced products. Please use only experimentally or for evaluating functions during trial manufacture.

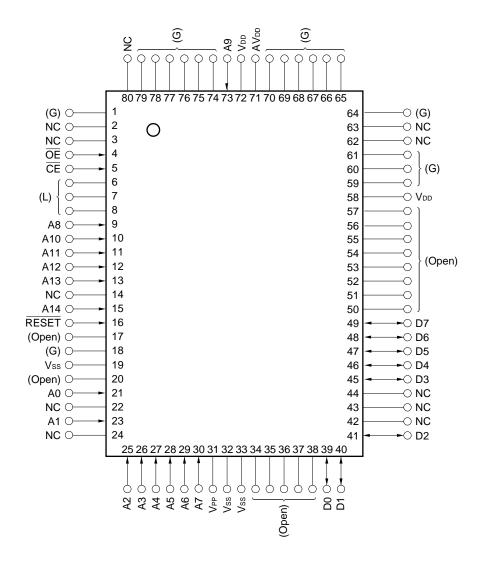

- 74-pin plastic QFP (20 \times 20 mm) μ PD78P322GJ-5BJ
- 74-pin ceramic WQFN μPD78P322KD

Caution Connect NC pins to Vss for measures against noise (can leave open).

Remark These pins are compatible with the μ PD78322GJ pins.

- 68-pin plastic QFJ (950 \times 950 mils) μ PD78P322L
- 68-pin ceramic WQFN μPD78P322KC

Remark These pins are compatible with the μ PD78322L pins.


P00-P07	: Port 0	RESET	: Reset
P20-P27	: Port 2	X1, X2	: Crystal
P30-P34	: Port 3	WDTO	: Watchdog Timer Output
P40-P47	: Port 4	ĒΑ	: External Access
P50-P57	: Port 5	TMD	: Turbo Mode
P70-P77	: Port 7	TAS	: Turbo Access Strobe
P80-P85	: Port 8	WR	: Write Strobe
P90-P93	: Port 9	RD	: Read Strobe
NMI	: Nonmaskable Interrupt	ASTB	: Address Strobe
INTP0-INTP6	: Interrupt From Peripherals	AD0-AD7	: Address/Data Bus
RTP0-RTP7	: Real-Time Port	A8-A15	: Address Bus
TI	: Timer Input	AN0-AN7	: Analog Input
TxD	: Transmit Data	AVREF	: Analog Reference Voltage
RxD	: Receive Data	AVss	: Analog Vss
SB0/SO	: Serial Bus/Serial Output	AV_{DD}	: Analog V _{DD}
SB1/SI	: Serial Bus/Serial Input	V_{DD}	: Power Supply
SCK	: Serial Clock	Vss	: Ground
TO00-TO03	:1	NC	: No Connection
TO10, TO11	: } Timer Output		

- (2) PROM programming mode ($\overline{RESET} = H$, AVDD = L)
 - \bullet 80-pin plastic QFP (14 \times 20 mm)

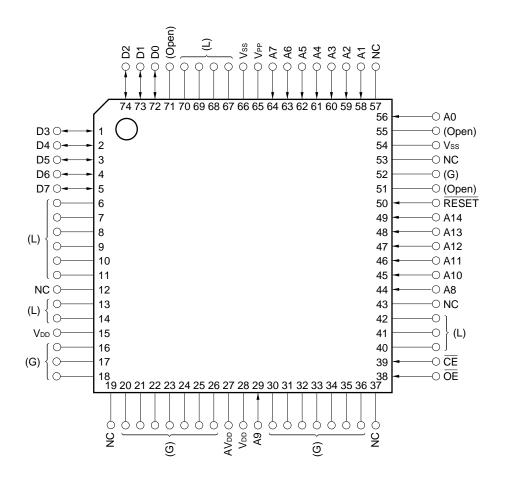
μPD78P322GF-3B9

• 80-pin ceramic WQFN μ PD78P322K

Cautions 1. The recommended connection of the unused pins in the PROM programming mode are indicated in parentheses.

L : Connect each pin to Vss via a resistor.

G : Connect the pin to Vss.


Open : Leave the pin unconnected.

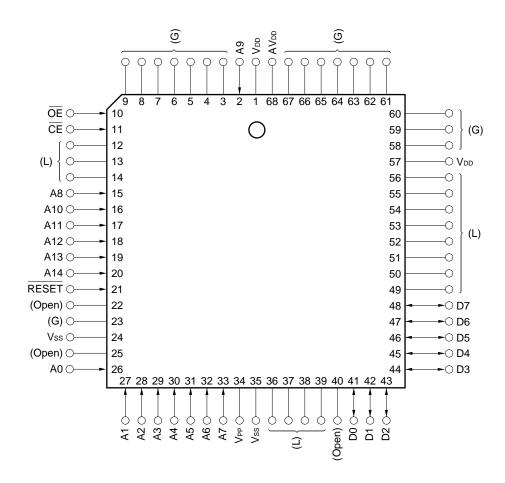
2. Connect NC pins to Vss for measures against noise (can leave open).

The μ PD78P322K does not maintain planned reliability when used in mass-produced products. Please use only experimentally or for evaluating functions during trial manufacture.

• 74-pin plastic QFP (20 \times 20 mm) μ PD78P322GJ-5BJ

• 74-pin ceramic WQFN μPD78P322KD

Cautions 1. The recommended connection of the unused pins in the PROM programming mode are indicated in parentheses.


E : Connect each pin to Vss via a resistor.

G : Connect the pin to Vss.

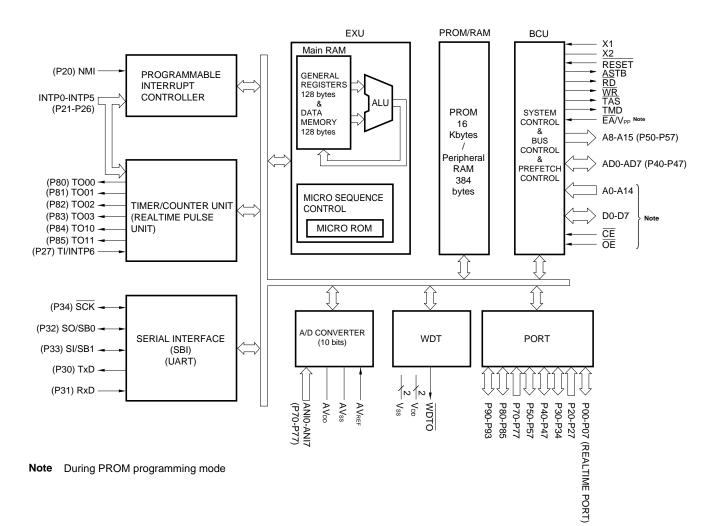
Open : Leave the pin unconnected.

2. Connect NC pins to Vss as measure against noise.

- 68-pin plastic QFJ (950 \times 950 mil) μ PD78P322L
- 68-pin ceramic WQFN μPD78P322KC

Caution The recommended connection of the unused pins in the PROM programming mode are indicated in parentheses.

L : Connect each pin to Vss via a resistor.


G : Connect the pin to Vss.

Open : Leave the pin unconnected.

CE : Chip Enable VPP : Programming Power Supply

OE : Output Enable NC : No Connection

BLOCK DIAGRAM

CONTENTS

1.	PIN FUNCTIONS 11				
	1.1 Normal Operating Mode 11				
	1.2 PROM Programming Mode (RESET = H, AVDD = L) 13				
	1.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins 14				
2.	DIFFERENCES BETWEEN μ PD78P322 and μ PD78322 16				
3.	PROM PROGRAMMING 17				
	3.1 Operation Mode 17				
	3.2 PROM Write Procedure 18				
	3.3 PROM Read Procedure 20				
4.	ERASURE CHARACTERISTICS (FOR μ PD78P322K/KC/KD ONLY) 21				
5.	OPAQUE FILM ON ERASURE WINDOW (FOR μ PD78P322K/KC/KD ONLY) 21				
6.	ONE-TIME PROM VERSION SCREENING 21				
7.	ELECTRICAL SPECIFICATIONS 22				
8.	PACKAGE DRAWINGS 36				
9.	RECOMMENDED SOLDERING CONDITIONS 42				
AP	PPENDIX A. DRAWINGS OF CONVERSION SOCKETS AND RECOMMENDED FOOTPRINTS 44				
AP	PPENDIX B. TOOLS 48				
	B.1 Development Tools 48				
	B.2 Evaluation Tools 52				

*

B.3 Embedded Software ... 52

1. PIN FUNCTIONS

1.1 Normal Operating Mode

(1) Port Pins

Pin Name	Input/Output	Function	Alternate
			Function
P00-P07	Input/Output	PORT0	RTP0-RTP7
	(Output)	8-bit input/output port	
		Input or output mode can be specified bit-wise.	
		The port can also operate as a real-time output port.	
P20	Input	PORT 2	NMI
P21		8-bit input-only port	INTP0
P22			INTP1
P23			INTP2
P24			INTP3
P25			INTP4
P26			INTP5
P27			INTP6/TI
P30	Input/Output	PORT 3	TxD
P31		5-bit input/output port	RxD
P32		Input or output mode can be specified bit-wise.	SO/SB0
P33			SI/SB1
P34			SCK
P40-P47	Input/Output	PORT 4	AD0-AD7
		8-bit input/output port	
		Input or output mode can be specified in 8-bit units.	
P50-P57	Input/Output	PORT 5	A8-A15
		8-bit input/output port	
		Input or output mode can be specified bit-wise.	
P70-P77	Input	PORT 7	AN0-AN7
		8-bit input-only port	
P80	Input/Output	PORT 8	TO00
P81		6-bit input/output port	TO01
P82		Input or output mode can be specified bit-wise.	TO02
P83			TO03
P84			TO10
P85			TO11
P90	Input/Output	PORT 9	RD
P91		4-bit input/output port	WR
P92		Input or output mode can be specified bit-wise.	TAS
P93			TMD

(2) Non-Port Pins (1/2)

Pin Name	Input/Output	Function	Alternate
			Function
RTP0-RTP7	Output	Real-time output port which outputs a pulse in synchronization with the trigger signal from	P00-P07
		the real-time pulse unit (RPU).	
INTP0	Input	Edge-detected external interrupt request input.	P21
INTP1		The valid edge can be specified in the mode register.	P22
INTP2			P23
INTP3			P24
INTP4			P25
INTP5			P26
INTP6			P27/TI
NMI	Input	Edge-detected nonmaskable interrupt request input.	P20
		The rising or falling edge can be selected for the valid edge by setting the mode register.	
TI	Input	External count clock input pin to timer 1 (TM1).	P27/INTP6
RxD	Input	Serial data input pin to asynchronous serial interface (UART).	P31
TxD	Output	Serial data output pin from asynchronous serial interface (UART).	P30
SI	Input	Serial data input pin to clocked serial interface in 3-wire mode.	P33/SB1
SO	Output	Serial data output pin from clocked serial interface in 3-wire mode.	P32/SB0
SB0	Input/Output	Serial data input/output pins to/from clocked serial interface in SBI mode.	P32/SO
SB1			P33/SI
SCK	Input/Output	Serial clock input/output pin to/from clocked serial interface.	P34
AD0-AD7	Input/Output	Multiplexed address/data bus used when external memory is added.	P40-P47
A8-A15	Output	Address bus used when external memory is added.	P50-P57
RD	Output	Strobe signal output for external memory read operation.	P90
WR		Strobe signal output for external memory write operation.	P91
TAS	Output	Control signal output pins to access turbo access manager (µPD71P301). Note	P92
TMD			P93
TO00	Output	Pulse output from real-time pulse unit.	P80
TO01			P81
TO02			P82
TO03			P83
TO10			P84
TO11			P85
ASTB	Output	Timing signal output pin to externally latch low-order address information output from	_
		AD0-AD7 for external memory access.	
WDTO	Output	Signal output which indicates that watchdog timer generated non-maskable interrupt.	_
ĒA	Input	For μ PD78P322, normally connect the \overline{EA} pin to V_{DD} . When the \overline{EA} pin is connected to	_
		Vss, the μ PD78P322 enters the ROMless mode and external memory is accessed.	
		The EA pin level cannot be changed during operation.	

Note Turbo access manager (μ PD71P301) is available for maintenance purposes only.

*

(2) Non-Port Pins (2/2)

Pin Name	Input/Output	Function	Alternate
			Function
AN0-AN7	Input	Analog input to A/D converter.	
AVREF	Input	A/D converter reference voltage input.	_
AV _{DD}	_	A/D converter analog power supply.	_
AVss	Vss — A/D converter GND.		_
RESET	Input	System reset input.	_
X1	Input	Crystal resonator connection pin for system clock generation. To supply external clock,	
X2	X2 input to the X1 and input inverted signal to the X2 pin (X2 pin can be unconnected.)		
VDD	V _{DD} — Positive power supply pin.		_
Vss	_	GND pin.	_
NC	_	No internal connection. Connect to Vss (can leave open).	_

1.2 PROM Programming Mode (RESET = H, AVDD = L)

Pin Name	Input/Output	Function	
AV _{DD}	Input	PROM programming mode setting.	
RESET			
A0-A14	Input	Address bus.	
D0-D7	Input/Output	Data bus.	
CE	Input	PROM enable to PROM.	
OE	Input	Read strobe to PROM.	
V _{PP}	_	Write power supply.	
V _{DD}		Positive power supply.	
Vss		GND.	
NC		No internal connection. Connect to Vss (can leave open).	

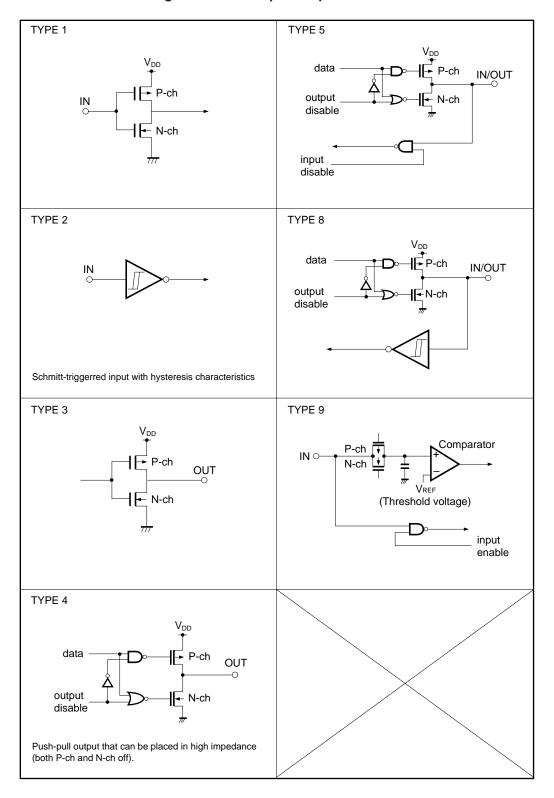

1.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins

Table 1-1 and Figure 1-1 show the pin input/output circuit schematically.

Table 1-1. Pin Input/Output Circuits and Recommended Connection of Unused Pins

Pin	Input/Output	Recommended connection of unused pins
	circuit type	
P00/RTP0-P07/RTP7	5	Input state: Independently connect to V _{DD} or Vss via a resistor.
		Output state: Leave Open.
P20/NMI	2	Connect to Vss.
P21/INTP0-P26/INTP5		
P27/INTP6/TI		
P30/TxD	5	Input state: Independently connect to V _{DD} or V _{SS} via a resistor.
P31/RxD		Output state: Leave Open.
P32/SO/SB0	8	
P33/SI/SB1		
P34/SCK		
P40/AD0-P47/AD7	5	
P50/A8-P57/A15		
P70/AN0-P77/AN7	9	Connect to Vss.
P80/T000-P83/T003	5	Input state: Independently connect to VDD or Vss via a resistor.
P84/TO10, P85/TO11		Output state: Leave Open.
P90/RD	5	
P91/WR		
P92/TAS		
P93/TMD		
WDTO	3	Leave Open.
ASTB	4	
EA	1	_
RESET	2	_
AVDD		Connect to V _{DD} .
AVREF	_	Connect to Vss.
AVss		
Vpp	_	Connect to VDD.
NC		Connect to Vss (can leave open).

Figure 1-1. Pin Input/Output Circuits

2. DIFFERENCES BETWEEN μ PD78P322 and μ PD78322

The μ PD78P322 is a version provided by replacing the μ PD78322's on-chip mask ROM with one-time PROM or EPROM. Thus, the μ PD78P322 and μ PD78322 are the same in function except for the ROM specifications such as write or verify. Table 2-1 lists the differences between these two products.

This Data Sheet describes the PROM specification function. Refer to the μ PD78322 documents for details of other functions.

Table 2-1. Differences between μ PD78P322 and μ PD78322

Item Part Number	μ PD78P322		μPD78322	
Internal program memory	One-time PROM EPROM		Mask ROM	
(electrical program)	(programmable only once)	(programmable only once) (reprogrammable)		
PROM programming pin	Contained		Not contained	
Package	68-pin plastic QFJ 68-pin ceramic WQFN		68-pin plastic QFJ	
	74-pin plastic QFP	• 74-pin ceramic WQFN	• 74-pin plastic QFP	
	80-pin plastic QFP 80-pin ceramic WQFN		80-pin plastic QFP	
Electrical specifications	Current dissipations are different.			
Others	Noise immunity and noise radiation differ because circuit complexity and mask layout are			
	different.			

* Caution The noise immunity and noise radiation differ between the PROM and mask ROM versions. To replace the PROM version with the mask ROM version when shifting from experimental production to mass production, evaluate your system by using the CS version (not ES version) of the mask ROM version.

3. PROM PROGRAMMING

The PROM incorporated in the μ PD78P322 is a 16,384 × 8-bit electrically writable PROM. For programming, set the PROM programming mode by using the $\overline{\text{RESET}}$ and AV_{DD} pins.

The programming characteristics are compatible with the μ PD27C256A programming characteristics.

Table 3-1. Pin Function in Programming Mode

Function	Normal Operating Mode	Programming Mode	
Address input	P00-P07, P80, P20, P81-P85	A0-A14	
Data input	P40-P47	D0-D7	
Chip enable/program pulse	P31	CE	
Output enable	P30	ŌĒ	
Program voltage	VPP		
Mode control	RESET, AVDD		

3.1 Operation Mode

To set the program write/verify mode, set $\overline{RESET} = H$ and AVDD = L. For the mode, the operation mode can be selected by setting the \overline{CE} and \overline{OE} pins, as listed in Table 3-2.

To read the PROM contents, set the read mode.

Connect the unused pins exactly as indicated in Pin Configuration.

Table 3-2. PROM Programming Operation Mode

Mode	RESET	AVDD	CE	ŌE	V _{PP}	V _{DD}	D0-D7
Program write	Н	L	L	Н	+12.5 V	+6 V	Data input
Program verify			Н	L			Data output
Program inhibit			Н	Н			High impedance
Read			L	L	+5 V	+5 V	Data output
Output disable			L	Н			High impedance
Standby			Н	L/H			High impedance

Caution When V_{PP} is set to +12.5 V and V_{DD} is set to +6V, setting both $\overline{\text{CE}}$ and $\overline{\text{OE}}$ to L is prohibited.

3.2 PROM Write Procedure

The write procedure into PROM is as follows:

- (1) Fix RESET = H and AVDD = L. Connect other unused pins exactly as indicated in section "Pin Configuration."
- (2) Supply +6 V to the VDD and +12.5 V to the VPP pin.
- (3) Supply an initial address.
- (4) Supply write data.
- (5) Supply 1 ms program pulse (active low) to the \overline{CE} pin.
- (6) Execute the verify mode. Check whether or not the write data is written normally.
 - When it is written normally: Proceed to step (8).
 - When it is not written normally: Repeat steps (4) to (6).

If the data is not written normally after 25 repetitions of the steps, proceed to step (7).

- (7) Assume the device to be defective. Stop write operation.
- (8) Supply write data and X (number of steps (4) to (6) repetitions) x 3 ms program pulses (additional write).
- (9) Increment the address.
- (10) Repeat steps (4) to (9) to the last address.

Figure 3-1 shows the PROM Write/Verify Timing Steps (2) to (8) above.

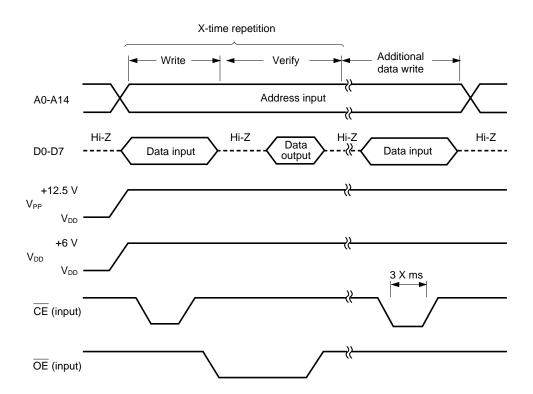


Figure 3-1. PROM Write/Verify Timing

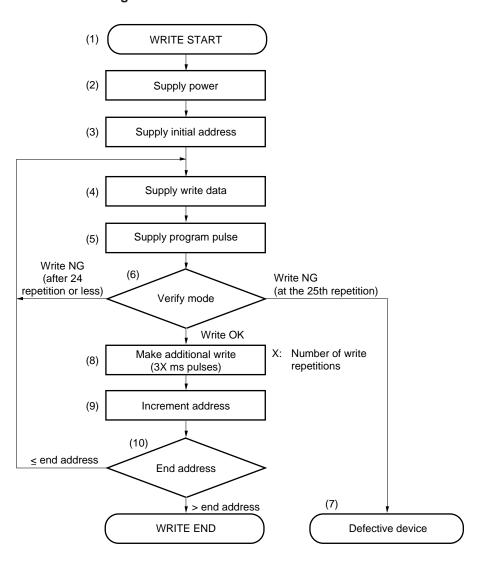
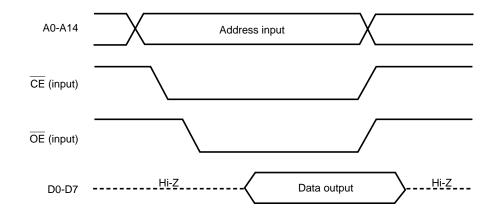


Figure 3-2. Write Procedure Flowchart


3.3 PROM Read Procedure

The read procedure of the PROM contents into the external data bus (D0-D7) is as follows.

- (1) Fix RESET = H and AVDD = L. Connect other unused pins exactly as indicated in Pin Configuration.
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input the address of the data to be read to the A0-A14 pins.
- (4) Execute the read mode.
- (5) The data is output to the D0-D7 pins.

Figure 3-3 shows the PROM read timing steps (2) to (5) above.

Figure 3-3. PROM Read Timing

4. ERASURE CHARACTERISTICS (FOR μ PD78P322K/KC/KD ONLY)

The data written into the μ PD78P322K/KC/KD program memory can be erased (FFH) and new data can be rewritten into the memory.

To erase data, apply light with a wavelength shorter than 400 nm to the window. Normally, apply ultraviolet rays having the 254-nm wavelength. The radiation amount required to completely erase data is as follows:

- Ultraviolet strength x erasure time: 15 W•s/cm² or more
- Erasure time: 15 to 20 minutes when a 12,000 μ W/cm² ultraviolet lamp is used. However, the time may be prolonged due to ultraviolet lamp performance deterioration, dirty window, etc.

For erasure, place an ultraviolet lamp at a position within 2.5 cm from the window. If a filter is attached to the ultraviolet lamp, remove the filter before applying ultraviolet rays.

5. OPAQUE FILM ON ERASURE WINDOW (FOR μ PD78P322K/KC/KD ONLY)

If the μ PD78P322K/KC/KD window is exposed to sunlight or fluorescent lamp light for hours, EPROM data may be erased and the internal circuit may operate erroneously. To prevent such accidents from occurring, put a protective seal on the window.

A protective seal whose quality is guaranteed by NEC is attached to every EPROM version with window at shipment.

6. ONE-TIME PROM VERSION SCREENING

The one-time PROM versions (μ PD78P322GF-3B9, 78P322GJ-5BJ, 78P322L) cannot be completely tested by NEC for shipment because of their structure. For screening, it is recommended to verify PROM after storing the necessary data under the following conditions:

Storage temperature	Storage time	
125°C	24 hours	

NEC provides chargeable services ranging from one-time PROM writing to marking, screening and verification for QTOP microcontroller products. For details, contact an NEC sales representative.

7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (TA = 25 °C)

Parameter	Symbol	Test Condit	tions	Ratings	Unit
Power supply voltage	V _{DD}			-0.5 to +7.0	V
	AVDD			-0.5 to V _{DD} +0.5	V
	V _{PP}			-0.5 to +13.5	V
	AVss			-0.5 to +0.5	V
Input voltage	VII	Note 1	Note 1 -		V
	V _{I2}	P20/NIM (A	(9) PIN	-0.5 to +13.5	V
Output voltage	Vo			-0.5 to V _{DD} +0.5	V
Output current, low	Іоь	All output pins		4.0	mA
		Total for all	pins	90	mA
Output current, high	Іон	All output pins Total for all pins		-1.0	mA
				-20	mA
Analog input voltage	VIAN	Note 2	AVDD > VDD	-0.5 to V _{DD} +0.5	V
			$V_{DD} \ge AV_{DD}$	-0.5 to AV _{DD} +0.5	
A/D converter reference	AVREF		AVDD > VDD	-0.5 to V _{DD} +0.3	V
input voltage			V _{DD} ≥ AV _{DD}	-0.5 to AV _{DD} +0.3	
Operating ambient temperature	TA			-10 to +70	°C
Storage temperature	Tstg			-65 to +150	°C

Notes 1. Pins except for P20/NMI (A9), P70/AN0-P77/AN7

- **2.** P70/AN0-P77/AN7
- * Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter, even momentarily. In other words, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions

Oscillation frequency	TA	V _{DD}
8 MHz ≤ fxx ≤ 16 MHz	–10 to +70 °C	+5.0 V ±5%

Capacitance (TA = 25 °C, Vss = VDD = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Сі	f = 1 MHz			10	pF
Output capacitance	Со	Unmeasured pins returned to 0 V			20	pF
I/O capacitance	Сю				20	pF

Oscillator Characteristics (TA = -10 to +70 °C, VDD = +5 V ± 5 %, Vss = 0 V)

Resonator	Recommended Circuit	Parameter	MIN.	MAX.	Unit
Ceramic or crystal resonator	X2 X1 V _{SS} ———————————————————————————————————	Oscillation frequency (fxx)	8	16	MHz
External clock	X1 X2 HCMOS Inverter or X1 X2	X1 input frequency (fx) X1 input rise, fall time (fxR, txF)	8	16	MHz
	Open HCMOS	X1 input high, low level width	25	80	ns
	Inverter	(twxh, twxL)			

Caution When using the system clock oscillator, wire the portion enclosed in broken lines in the figure as follows to avoid adverse influences on the wiring capacitance:

- · Keep the wiring length as short as possible.
- Do not cross the wiring over the other signal lines. Do not route the wiring in the vicinity of lines through which a high fluctuating current flows.
- Always keep the ground point of the capacitor of the oscillator circuit at the same potential as
 Vss. Do not connect the power source pattern through which a high current flows.
- Do not extract signals from the oscillator.

Recommended Oscillator Constants

Ceramic resonator

Manufacturer Name	Part Number	Frequency	Recommended	
		[MHz]	Constants	
			C1 [pF]	C2 [pF]
MURATA	CSA8.00MT	8.0	30	30
	CSA12.0MT	12.0		
	CSA14.74MXZ040	14.74	15	15
	CSA16.00MX040	16.0		
	CST8.00MTW	8.0	Internal	Internal
	CST12.0MTW	12.0		
	CST14.74MXW0C3	14.74		
	CST16.00MXW0C3	16.0		

Crystal resonator

Manufacturer Name	Part Number	Frequency	Recommended	
		[MHz]	Constants	
			C1 [pF]	C2 [pF]
KINSEKI	HC49/U-S	8 to 16	10	10
	HC49/U			

DC Characteristics (TA = -10 to +70 °C, VDD = +5 V $\pm 5\%$, Vss = 0 V)

Parameter	Symbol	Test Condition	s	MIN.	TYP.	MAX.	Unit
Input voltage, low	VIL			0		0.8	V
Input voltage, high	V _{IH1}	Note 1		2.2			V
	V _{IH2}	Note 2		0.8V _{DD}			
Output voltage, low	Vol	IoL = 2.0 mA				0.45	V
Output voltage, high	Vон	Іон = -400 μΑ		V _{DD} -1.0			V
Input leakage current	lu	$0 \text{ V} \leq V_I \leq V_{DD}$				±10	μΑ
Output leakage current	Іьо	0 V ≤ Vo ≤ VDD)			±10	μΑ
V _{DD} power supply current	I _{DD1}	Operation mod	le		40	65	mA
	I _{DD2}	HALT mode			20	35	mA
Data retention voltage	VDDDR	STOP mode		2.5			V
Data retention current	Idddr	STOP mode	VDDDR = 2.5 V		2	10	μΑ
			VDDDR = 5.0 V ±5%		10	50	μΑ

Notes 1. Pins other than mentioned in Note 2.

2. RESET, X1, X2, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2, P24/INTP3, P25/INTP4, P26/INTP5, P27/INTP6/TI, P32/SO/SB0, P33/SI/SB1, or P34/SCK pins.

***** AC Characteristics (TA = -10 to +70 °C, VDD = +5 V $\pm 5\%$, Vss = 0 V)

Discontinuous read/write operation (when general-purpose memory is connected)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
System clock cycle time	tсүк		125	250	ns
Address setup time (to ASTB \downarrow)	tsast		32		ns
Address hold time (from ASTB \downarrow)	thsta		32		ns
$Address \to \overline{RD} \downarrow delay \ time$	tdar		85		ns
$\overline{RD} \downarrow o$ address float time	tfra			0	ns
Address → data input time	tdaid			222	ns
$\overline{ m RD} \downarrow ightarrow$ data input time	torio			112	ns
$ASTB \downarrow \to \overline{RD} \downarrow delay time$	tostr		42		ns
Data hold time (from RD ↑)	thrid		0		ns
$\overline{RD} \uparrow \to address$ active time	tdra		50		ns
RD low level width	twrL		157		ns
ASTB high level width	twsтн		37		ns
Address $ ightarrow \overline{WR} \downarrow delay time$	tdaw		85		ns
ASTB \downarrow \rightarrow data output time	tostod			102	ns
$\overline{ m WR} \downarrow ightarrow$ data output time	towod			40	ns
$ASTB \downarrow o \overline{WR} \downarrow delay \; time$	tostw		42		ns
Data setup time (to WR ↑)	tsodw		147		ns
Data hold time (from WR ↑)	thwod		32		ns
$\overline{ m WR} \uparrow ightarrow m ASTB \uparrow m delay time$	towst		42		ns
WR low level width	twwL		157		ns

tcүк-Dependent Bus Timing Definition

Parameter	Calculation expression	MIN./MAX.	Unit
tsast	0.5T – 30	MIN.	ns
thsta	0.5T - 30	MIN.	ns
tdar	T – 40	MIN.	ns
tdaid	(2.5 + n) T – 90	MAX.	ns
torid	(1.5 + n) T – 75	MAX.	ns
tostr	0.5T - 20	MIN.	ns
tdra	0.5T – 12	MIN.	ns
twrl	(1.5 + n) T – 30	MIN.	ns
twsтн	0.5T – 25	MIN.	ns
tdaw	T – 40	MIN.	ns
tostod	0.5T + 40	MAX.	ns
tostw	0.5T – 20	MIN.	ns
tsodw	1.5T – 40	MIN.	ns
thwod	0.5T - 30	MIN.	ns
towst	0.5T – 20	MIN.	ns
twwL	(1.5 + n) T – 30	MIN.	ns

Remarks 1. T = tcyk = 1/fclk (fclk is the internal system clock frequency).

- 2. n is the number of wait cycles defined by user software.
- 3. Only parameters listed in the table are dependent on $tcy\kappa$.

Serial Operation (TA = -10 to +70 °C, VDD = +5 V $\pm 5\%$, Vss = 0 V)

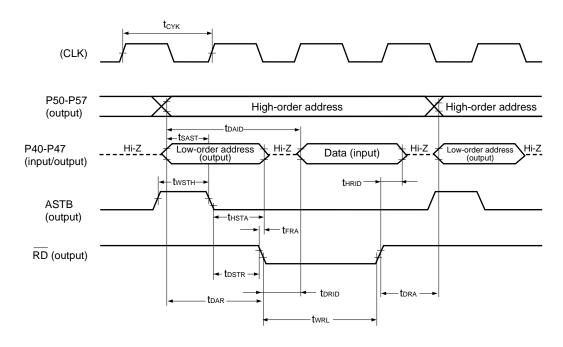
Parameter	Symbol	Test Condition	ns	MIN.	MAX.	Unit
Serial clock cycle time	tcysk	SCK Output	Internal divide by 8	1		μs
		SCK Input	External clock	1		μs
Serial clock high-level width	twskL	SCK Output	Internal divide by 8	420		ns
		SCK Input	External clock	420		ns
Serial clock high-level width	twskH	SCK Output	Internal divide by 8	420		ns
		SCK Input	External clock	420		ns
SI setup time (to SCK ↑)	tsrxsk			80		ns
SI hold time (from SCK ↑)	thskrx			80		ns
$\overline{SCK} \downarrow \to SO$ delay time	tosktx	R = 1 kΩ, C =	= 100 pF		210	ns

Other operations (TA = -10 to $+70^{\circ}$ C, VDD = +5 V $\pm 5\%$, Vss = 0 V)

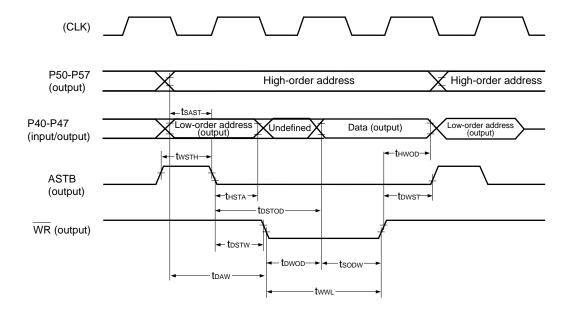
Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
NMI high, low-level width	twnih,		5		μs
	twnil				
INTP0 high, low-level width	twioн,		8T		tcyk
	twioL				
INTP1 high, low-level width	twi1н,		8T		tcyk
	twi1L				
INTP2 high, low-level width	twizh,		8T		tcyk
	twi2L				
INTP3 high, low-level width	twiзн,		8T		tcyk
	twisL				
INTP4 high, low-level width	twi4н,		8T		tcyk
	tw14L				
INTP5 high, low-level width	twisн,		8T		tcyk
	twisL				
INTP6 high, low-level width	twi6н,		8T		tcyk
	twicL				
RESET high, low-level width	twrsh,		5		μs
	twrsL				
TI high, low-level width	twтıн,	TM1	8T		tcyk
	twTIL	In the event counter mode			

A/D Converter (TA = -10 to +70°C, VDD = +5 V ± 5 %, Vss = AVss = 0 V, VDD -0.5 V \leq AVDD \leq VDD)

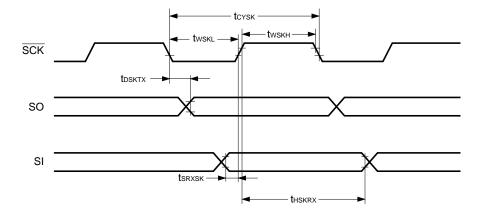
Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Resolution				10			bit
Total error Note1		4.5 V ≤ AVREF ≤	AV _{DD}			±0.4	%FSR
		3.4 V ≤ AVREF ≤	AVDD			±0.7	%FSR
Quantization error						±1/2	LSB
Conversion time	tconv			144			tcyk
Sampling time	tsamp			24			tcyk
Zero scale error Note1		4.5 V ≤ AVREF ≤	AV _{DD}		+1.5	±2.5	LSB
		3.4 V ≤ AV _{REF} ≤	AV _{DD}		+1.5	±4.5	LSB
Fullscale error Note1		4.5 V ≤ AVREF ≤	AVDD		+1.5	±2.5	LSB
		3.4 V ≤ AVREF ≤	AV _{DD}		+1.5	±4.5	LSB
Nonlinear error Note1		4.5 V ≤ AVREF ≤	AV _{DD}		+1.5	±2.5	LSB
		3.4 V ≤ AVREF ≤	AV _{DD}		+1.5	±4.5	LSB
Analog input voltage Note2	VIAN			-0.3		AVDD	V
Basic voltage	AVREF			3.4		AVDD	V
AVREF current	AIREF				1.0	3.0	mA
AV _{DD} supply current	Aldd				2.0	6.0	mA
A/D converter data	Aldddr	STOP mode	AVDDDR = 2.5 V		2.0	10	μΑ
retention current			AVDDDR = 5 V±5%		10	50	μΑ


Notes 1. Quantization error is excluded.

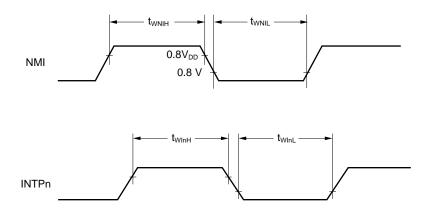
2. When $-0.3~V \le V_{IAN} \le 0~V$, conversion result is 000H. When 0 V < V_{IAN} < AV_{REF}, conversion is executed with 10-bit resolution. When $AV_{REF} \le V_{IAN} \le AV_{DD}$, conversion result is 3FFH.


*

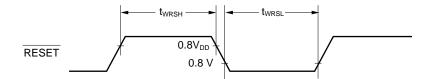
Discontinuous Read Operation

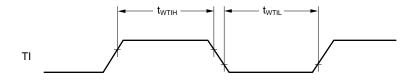


Discontinuous Write Operation



Serial Operation


Interrupt Input Timing


Remark n = 0-6

Reset Input Timing

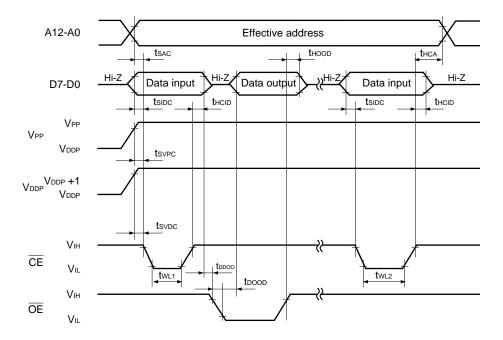
TI Pin Input Timing

DC Programming Characteristics (TA = 25 \pm 5 $^{\circ}$ C, Vss = 0 V)

Parameter	Symbol	Symbol Note1	Test conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	Vін	ViH		2.2		V _{DDP} +0.3	V
Input voltage, low	VIL	VIL		-0.3		0.8	V
Input leakage current	ILIP	Li	$0 \le V_{I} \le V_{DDP}$ Note 2			±10	μΑ
Output voltage, high	Vон	Vон	$I_{OH} = -400 \ \mu A$	2.4			V
Output voltage, low	Vol	Vol	IoL = 2.0 mA			0.45	V
Input current	I _{A9}	_	A9 (P20/NMI) pin			±10	μΑ
Output leakage current	ILO	_	$0 \le V_0 \le V_{DDP}, \overline{OE} = V_{IN}$			10	μΑ
PROG pin high voltage input current	IIP	_				±10	μΑ
V _{DDP} power supply voltage	VDDP	V _{DD}	Program memory write mode	5.75	6.0	6.25	V
			Program memory read mode	4.5	5.0	5.5	V
VPP power supply voltage	V _{PP}	VPP	Program memory write mode	12.2	12.5	12.8	V
			Program memory read mode	VPP = VDDP		V	
V _{DDP} power supply current	IDD	IDD	Program memory write mode		10	30	mA
			Program memory read mode $\overline{CE} = V_{IL}, V_{I} = V_{IH}$		10	30	mA
VPP power supply current	Ірр	Ірр	Program memory write mode $\overline{CE} = V_{IL}, \overline{OE} = V_{IH}$		10	30	mA
			Program memory read mode		1	100	μΑ

Notes 1. Corresponding μ PD27C256A symbols.

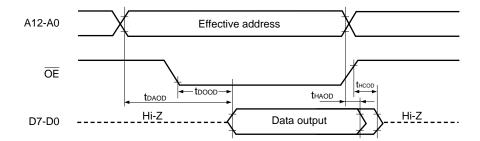
2. VDDP is VDD pin during the programming mode.



AC Programming Characteristics (TA = 25 \pm 5 °C, Vss = 0 V)

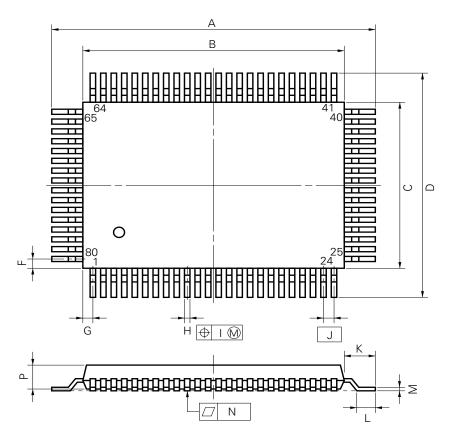
Parameter	Symbol	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
		Note					
Address setup time (to $\overline{\sf CE}\ \downarrow$)	tsac	tas		2			μs
$Data o \overline{OE} \downarrow delay \; time$	todoo	toes		2			μs
Input data setup time (to CE ↓)	tsidc	tos		2			μs
Address hold time (from CE ↑)	thca	tан		2			μs
Input data hold time (from CE ↑)	thcid	tон		2			μs
Output data hold time (from OE ↑)	thood	tor		0		130	ns
V _{PP} setup time (to $\overline{\text{CE}}$ ↓)	tsvpc	tvps		2			μs
V _{DDP} setup time (to $\overline{\text{CE}}$ ↓)	tsvdc	tvps		2			μs
Initial program pulse width	twL1	tpw		0.95	1.0	1.05	ms
Additional program pulse width	twL2	topw		2.85		78.75	ms
Address → data output time	t DAOD	tacc	OE = VIL			2	μs
$\overline{OE} \downarrow \to data$ output time	tDOOD	toe				1	μs
Data hold time (from OE ↑)	tнсор	tof		0		130	ns
Data hold time (from address)	thaod	tон	OE = VIL	0			ns

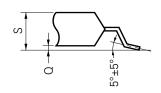
Note Corresponding μ PD27C256A symbols.


PROM Write Mode Timing

Cautions 1. Apply VDDP before VPP and remove it after VPP.

2. VPP must not exceed +13 V, including the overshoot.

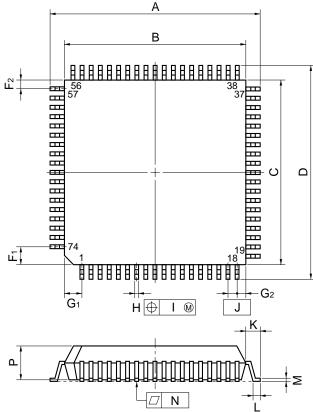

PROM Read Mode Timing



8. PACKAGE DRAWINGS

80 PIN PLASTIC QFP (14×20)

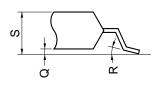
detail of lead end


NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

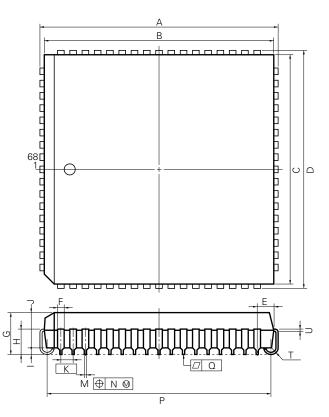
P80GF-80-3B9-2

ITEM	MILLIMETERS	INCHES				
А	23.6±0.4	0.929±0.016				
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$				
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$				
D	17.6±0.4	0.693±0.016				
F	1.0	0.039				
G	0.8	0.031				
Н	0.35±0.10	$0.014^{+0.004}_{-0.005}$				
I	0.15	0.006				
J	0.8 (T.P.)	0.031 (T.P.)				
K	1.8±0.2	0.071+0.008				
L	0.8±0.2	0.031+0.009				
М	0.15 ^{+0.10} _{-0.05}	0.006+0.004				
N	0.15	0.006				
Р	2.7	0.106				
Q	0.1±0.1	0.004±0.004				
S	3.0 MAX.	0.119 MAX.				


74 PIN PLASTIC QFP (□20)

NOTE

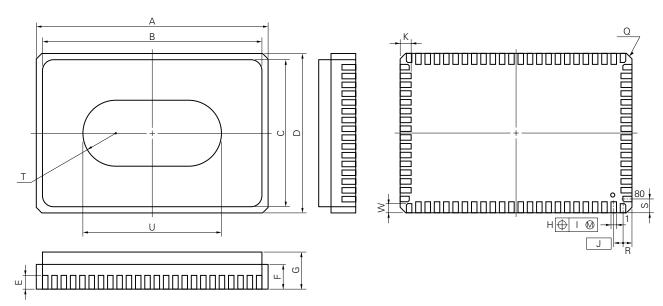
Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.


detail of lead end

MILLIMETERS	INCHES
23.2±0.4	$0.913^{+0.017}_{-0.016}$
20.0±0.2	$0.787^{+0.009}_{-0.008}$
20.0±0.2	$0.787^{+0.009}_{-0.008}$
23.2±0.4	0.913+0.017
2.0	0.079
1.0	0.039
2.0	0.079
1.0	0.039
0.40±0.10	$0.016^{+0.004}_{-0.005}$
0.20	0.008
1.0 (T.P.)	0.039 (T.P.)
1.6±0.2	0.063±0.008
0.8±0.2	$0.031^{+0.009}_{-0.008}$
0.15 ^{+0.10} -0.05	$0.006^{+0.004}_{-0.003}$
0.10	0.004
3.7	0.146
0.1±0.1	0.004±0.004
5°±5°	5°±5°
4.0 MAX.	0.158 MAX.
	23.2±0.4 20.0±0.2 20.0±0.2 23.2±0.4 2.0 1.0 2.0 1.0 0.40±0.10 0.20 1.0 (T.P.) 1.6±0.2 0.8±0.2 0.15+0.10 3.7 0.1±0.1 5°±5°

S74GJ-100-5BJ-3

68 PIN PLASTIC QFJ (□950 mil)

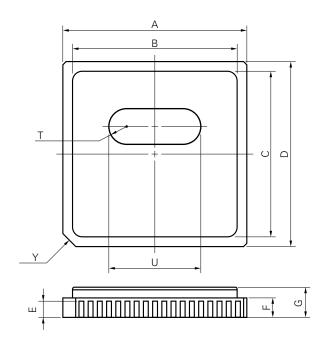

NOTE

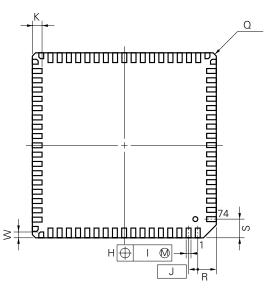
Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

P68L-50A1-2 ITEM **MILLIMETERS INCHES** 25.2±0.2 0.992±0.008 В 24.20 0.953 С 24.20 0.953 D 25.2±0.2 0.992±0.008 $0.076^{+0.007}_{-0.006}$ Ε 1.94±0.15 F 0.024 0.6 $0.173^{+0.009}_{-0.008}$ G 4.4±0.2 $0.110^{+0.009}_{-0.008}$ Н 2.8±0.2 0.035 MIN. Τ 0.9 MIN. J 3.4 0.134 1.27 (T.P.) 0.050 (T.P.) Κ $0.016\substack{+0.004 \\ -0.005}$ Μ 0.40 ± 1.0 Ν 0.12 0.005 Ρ 23.12±0.20 $0.910^{+0.009}_{-0.008}$ Q 0.006 0.15 Т R 0.8 R 0.031 $0.20^{+0.10}_{-0.05}$ $0.008^{+0.004}_{-0.002}$ U

80 PIN CERAMIC WQFN

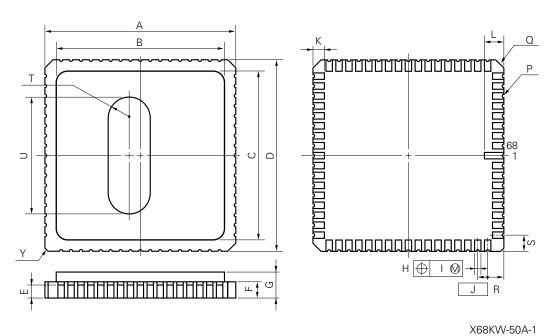
NOTE


Each lead centerline is located within 0.08 mm (0.003 inch) of its true position (T.P.) at maximum material condition.


X80KW-80A-1

ITEM	MILLIMETERS	INCHES
А	20.0±0.4	0.787+0.017
В	19.0	0.748
С	13.2	0.520
D	14.2±0.4	0.559±0.016
Е	1.64	0.065
F	2.14	0.084
G	4.064 MAX.	0.160 MAX.
Н	0.51±0.10	0.020±0.004
I	0.08	0.003
J	0.8 (T.P.)	0.031 (T.P.)
K	1.0±0.2	0.039+0.009
Q	C 0.5	C 0.020
R	0.8	0.031
S	1.1	0.043
Т	R 3.0	R 0.118
U	12.0	0.472
W	0.75±0.2	0.030+0.008

74 PIN CERAMIC WQFN


NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

X74KW-100A-1

ITEM	MILLIMETERS	INCHES		
Α	20.0±0.4	0.787 ^{+0.017} _{-0.016}		
В	18.0	0.709		
С	18.0	0.709		
D	20.0±0.4	0.787 ^{+0.017} _{-0.016}		
Е	1.94	0.076		
F	2.14	0.084		
G	4.0 MAX.	0.158 MAX.		
Н	0.51±0.10	0.020±0.004		
I	0.10	0.004		
J	1.0 (T.P.)	0.039 (T.P.)		
K	1.0±0.2	$0.039^{+0.009}_{-0.008}$		
Q	C 0.3	C 0.012		
R	2.0	0.079		
S	2.0	0.079		
Т	R 2.0	R 0.079		
U	10.0	0.394		
W	0.7±0.2	0.028+0.008		
Υ	C 1.5	C 0.059		

68 PIN CERAMIC WQFN

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

X68KW-50A-1

ITEM	MILLIMETERS	INCHES		
А	24.13±0.4	0.950±0.016		
В	21.5	0.846		
С	21.5	0.846		
D	24.13±0.4	0.950±0.016		
Е	1.65	0.065		
F	2.03	0.080		
G	3.50 MAX.	0.138 MAX.		
Н	0.64±0.10	$0.025^{+0.005}_{-0.004}$		
I	0.12	0.005		
J	1.27 (T.P.)	0.05 (T.P.)		
K	1.27±0.2	0.05±0.008		
L	2.16±0.2	0.085±0.008		
Р	R 0.2	R 0.008		
Q	C 1.02	C 0.04		
R	1.905	0.075		
S	1.905	0.075		
Т	R 3.0	R 0.118		
U	12.0	0.472		
Υ	C 0.5	C 0.020		

9. RECOMMENDED SOLDERING CONDITIONS

It is recommended that this device be soldered under the following conditions.

For details on the recommended soldering conditions, refer to information document "Semiconductor Devices Mounting Technology Manual" (IEI-1207).

For soldering methods and conditions other than those recommended, please contact your NEC sales representative.

Table 9-1. Soldering Conditions for Surface Mount Devices (1/2)

μ PD78P322GF-3B9: 80-pin plastic QFP (14 \times 20 mm)

Soldering Method	Soldering Conditions	Recommended Soldering
		Code
Infrared reflow	Package peak temperature: 235°C,	IR35-207-2
	Time: 30 seconds max. (210°C min.),	
	Number of times: 2 max., Maximum number of days: 7 days ^{Note}	
	(thereafter, 20 hours of prebaking is required at 125°C)	
	< Cautions >	
	(1) Wait for the device temperature to return to normal after the first	
	reflow before starting the second reflow.	
	(2) Do not perform flux cleaning with water after the first reflow.	
VPS	Package peak temperature: 215°C,	VP15-207-2
	Time: 40 seconds max. (200°C min.),	
	Number of times: 2 max., Maximum number of days: 7 days ^{Note}	
(thereafter, 20 hours of prebaking is required at 125°C)		
	< Cautions >	
	(1) Wait for the device temperature to return to normal after the first	
	reflow before starting the second reflow.	
	(2) Do not perform flux cleaning with water after the first reflow.	
Wave soldering	Soldering bath temperature: 260°C max., Time: 10 seconds max.,	WS60-207-1
	Number of times: 1,	
	Preheating temperature: 120°C max. (package surface temperature),	
	Maximum number of days: 7 days ^{Note} (thereafter, 20 hours of	
	prebaking is required at 125°C).	
Partial heating	Pin temperature: 300°C max.,	_
	Time: 3 seconds max. (per pin)	

μ PD78P322GJ-5BJ: 74-pin plastic QFP (20 \times 20 mm)

Soldering Method	Soldering Conditions	Recommended Soldering
		Code
Infrared reflow	Package peak temperature: 230°C,	IR30-107-1
	Time: 30 seconds max. (210°C min.), Number of times: 1,	
	Maximum number of days: 7 days ^{Note}	
	(thereafter, 10 hours of prebaking is required at 125°C)	
VPS	Package peak temperature: 215°C,	VP15-107-1
	Time: 40 seconds max. (200°C min.), Number of times: 1,	
	Maximum number of days: 7 days ^{Note}	
	(thereafter, 20 hours of prebaking is required at 125°C)	
Partial heating	Pin temperature: 300°C max.,	_
	Time: 3 seconds max. (per pin)	

Note Number of days after unpacking the dry pack. Storage conditions are 25°C and 65% RH max.

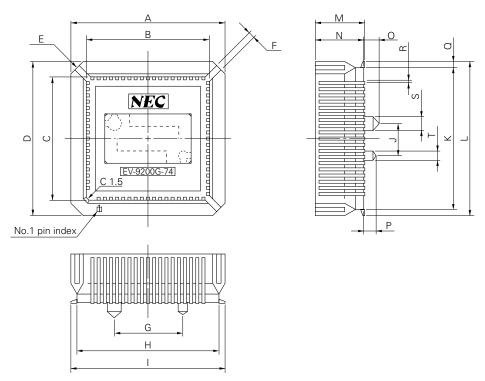
Caution Do not use different soldering methods together (except for partial heating method).

Table 9-1. Soldering Conditions for Surface Mount Devices (2/2)

μ PD78P322L: 68-pin plastic QFJ (950 \times 950 mils)

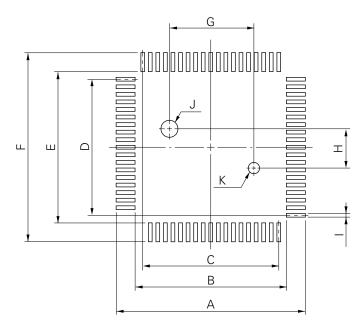
Soldering Method	Soldering Conditions	Recommended Soldering	
Infrared reflow	Package peak temperature: 235°C,	IR35-367-2	
	Time: 30 seconds max. (210°C min.), Number of times: 2 max.,		
	Maximum number of days: 7 days ^{Note}		
	(thereafter, 36 hours of prebaking is required at 125°C)		
	< Cautions >		
	(1) Wait for the device temperature to return to normal after the first		
	reflow before starting the second reflow.		
	(2) Do not perform flux cleaning with water after the first reflow.		
VPS	Package peak temperature: 215°C,	VP15-367-2	
	Time: 40 seconds max. (200°C min.), Number of times: 2 max.,		
Maximum number of days: 7 days ^{Note}			
	(thereafter, 36 hours of prebaking is required at 125°C)		
	< Cautions >		
	(1) Wait for the device temperature to return to normal after the first		
	reflow before starting the second reflow.		
(2) Do not perform flux cleaning with water after the first reflow.			
Partial heating	Pin temperature: 300°C max.,	_	
	Time: 3 seconds max. (per pin)		

Note Number of days after unpacking the dry pack. Storage conditions are 25°C and 65% RH max.


Caution Do not use different soldering methods together (except for partial heating method).

APPENDIX A. DRAWINGS OF CONVERSION SOCKETS AND RECOMMENDED FOOTPRINTS

(1) EV-9200G-74

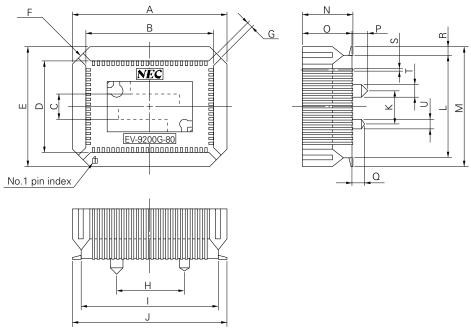

Figure A-1. Drawing of Conversion Socket (EV-9200G-74) (For reference only)

EV-9200G-74-G0

ITEM	MILLIMETERS	INCHES
А	25.0	0.984
В	20.35	0.801
С	20.35	0.801
D	25.0	0.984
Е	4-C 2.8	4-C 0.11
F	1.0	0.039
G	11.0	0.433
Н	22.0	0.866
I	24.7	0.972
J	5.0	0.197
K	22.0	0.866
L	24.7	0.972
М	8.0	0.315
N	7.8	0.307
0	2.5	0.098
Р	2.0	0.079
Q	1.35	0.053
R	0.35±0.1	0.014 ^{+0.004} _{-0.005}
S	ø2.3	Ø0.091
Т	ø 1.5	φ0.059

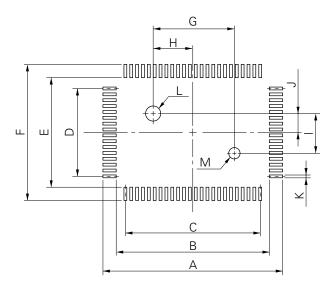
Figure A-2. Recommended Footprint of Conversion Socket (EV-9200G-74) (For reference only)

EV-9200G-74-P0


ITEM	MILLIMETERS	INCHES	
А	25.7	1.012	
В	21.0	0.827	
С	$1.0\pm0.02 \times 18=18.0\pm0.05$	$0.039^{+0.002}_{-0.001} \times 0.709 = 0.709^{+0.002}_{-0.003}$	
D	1.0±0.02 × 18=18.0±0.05	$0.039^{+0.002}_{-0.001} \times 0.709 = 0.709^{+0.002}_{-0.003}$	
Е	21.0	0.827	
F	25.7	1.012	
G	11.00±0.08	0.433+0.004	
Н	5.00±0.08	0.197 ^{+0.003} _{-0.004}	
I	0.6±0.02	0.024 ^{+0.001} _{-0.002}	
J	φ2.36±0.03	\$\phi_{0.093^{+0.001}_{-0.002}}\$	
K	φ1.57±0.03	\$\phi_{0.062^{+0.001}_{-0.002}}\$	

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

(2) EV-9200G-80


Figure A-3. Drawing of Conversion Socket (EV-9200G-80) (For reference only)

EV-9200G-80-G0

ITEM	MILLIMETERS	INCHES
А	25.0	0.984
В	20.30	0.799
С	4.0	0.157
D	14.45	0.569
Е	19.0	0.748
F	4-C 2.8	4-C 0.11
G	0.8	0.031
Н	11.0	0.433
I	22.0	0.866
J	24.7	0.972
K	5.0	0.197
L	16.2	0.638
М	18.9	0.744
0	8.0	0.315
N	7.8	0.307
Р	2.5	0.098
Q	2.0	0.079
R	1.35	0.053
S	0.35±0.1	0.014 ^{+0.004} _{-0.005}
Т	ø2.3	φ0.091
U	ø1.5	φ0.059

Figure A-4. Recommended Footprint of Conversion Socket (EV-9200G-80) (For reference only)

EV-9200G-80-P0

ITEM	MILLIMETERS	INCHES
А	25.7	1.012
В	21.0	0.827
С	0.8±0.02 × 23=18.4±0.05	$0.031^{+0.002}_{-0.001} \times 0.906 = 0.724^{+0.003}_{-0.002}$
D	0.8±0.02 × 15=12.0±0.05	$0.031^{+0.002}_{-0.001} \times 0.591 = 0.472^{+0.003}_{-0.002}$
Е	15.2	0.598
F	19.9	0.783
G	11.00±0.08	0.433+0.004
Н	5.50±0.03	0.217 ^{+0.001} _{-0.002}
I	5.00±0.08	0.197 ^{+0.003} _{-0.004}
J	2.50±0.03	0.098+0.002
K	0.5±0.02	0.02 ^{+0.001} _{-0.002}
L	\$\phi_2.36±0.03\$	\$\phi_{0.093^{+0.001}_{-0.002}}\$
М	φ1.57±0.03	\$\phi_0.062^{+0.001}_{-0.002}\$

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

* APPENDIX B. TOOLS

B.1 Development Tools

The following development tools are readily available to support development of systems using the μ PD78P322:

Language Processor

78K/III Series	Relocatable assembler common to the 78K/III series. Since it contains the macro function, the			
relocatable assembler	development efficiency can be improved. A structured assembler which enables you to explicity			
(RA78K/III)	describe program control structure is also attached and program productivity and maintenance can be improved.			
	Host machine	Host machine Ordering code		
		os	Supply medium	(product name)
	PC-9800 series	MS-DOS™	3.5-inch 2HD	μS5A13RA78K3
			5-inch 2HD	μS5A10RA78K3
	IBM PC/AT™	PC DOS™	3.5-inch 2HC	μS7B13RA78K3
	and compatible machine		5-inch 2HC	μS7B10RA78K3
	HP9000 series 700™	HP-UX™	DAT	μS3P16RA78K3
	SPARCstation™	SunOS™	Cartridge tape	μS3K15RA78K3
	NEWS™	NEWS-OS™	(QIC-24)	μS3R15RA78K3
78K/III Series	C compiler common to the	e 78K/III series. Th	is is a program to convert	a program written in C
C compiler	language into an object co	ode executable with	a microcontroller. When	using the compiler,
(CC78K/III)	78K/III series relocatable	assembler (RA78K/	/III) is necessary.	
	Host machine			Ordering code
		os	Supply medium	(product name)
	PC-9800 series	MS-DOS	3.5-inch 2HD	μS5A13CC78K3
			5-inch 2HD	μS5A10CC78K3
	IBM PC/AT™	PC DOS	3.5-inch 2HC	μS7B13CC78K3
	and compatible machine		5-inch 2HC	μS7B10CC78K3
	HP9000 series 700	HP-UX	DAT	μS3P16CC78K3
	SPARCstation	SunOS	Cartridge tape	μS3K15CC78K3
	NEWS	NEWS-OS	(QIC-24)	μS3R15CC78K3

Remark The operation of the relocatable assembler and C compiler is guaranteed only on the host machine under the operating systems listed above.

PROM Write Tools

Hard-	PG-1500	PG-1500 is a PROM programmer which enables you to program single chip micro-				
ware		controllers containing PROM by stand-alone or host machine operation by connecting an				
		attached board and optional programmer adapter to PG-1500. It also enables you to				
		program typical PROM devices of 256K bits to 4M bits.				
	UNISITE	PROM programmer manufactured by Data I. O. Japan.				
	2900					
	PA-78P322GF	PROM programmer adapters to write programs onto the μ PD78P322 on a general				
	PA-78P322GJ	purpose PROM programmer such as PG-1500.				
	PA-78P322K	PA-78P322GF μPD78P322GF				
	PA-78P322KC	PA-78P322GJ μPD78P322GJ				
	PA-78P322KD	PA-78P322K μPD78P322K				
	PA-78P322L	PA-78P322KC μPD78P322KC				
		PA-78P322KD μPD78P322KD				
		PA-78P322L μPD78P322L				
Soft-	PG-1500 controller	Connects PG-1500 and a host machine by a serial or parallel interface and controlls				
ware		PG-1500 on the host machine.				
		Host machine Orderin				
			OS	Supply medium	(product name)	
		PC-9800 series	MS-DOS	3.5-inch 2HD	μS5A13PG1500	
				5-inch 2HD	μS5A10PG1500	
		IBM PC/AT	PC DOS	3.5-inch 2HD	μS7B13PG1500	
		and compatible machine		5-inch 2HC	μS7B10PG1500	

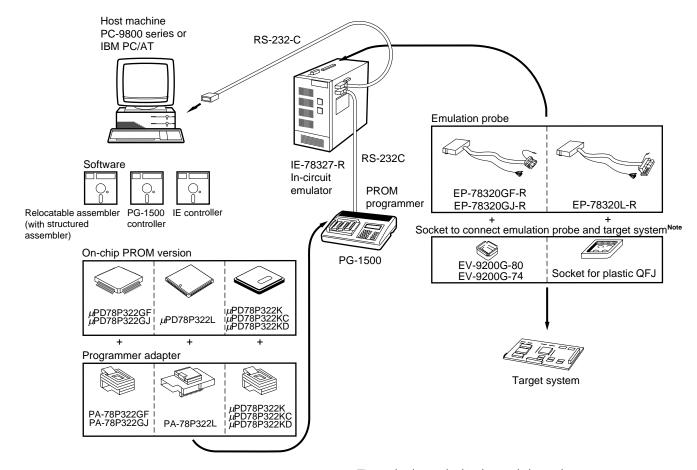
Remark The operation of the PG-1500 controller is guaranteed only on the host machine under the operating systems listed above.

Debugging Tools

Hard-	IE-78327-R	IE-78327-R and IE-78320-R are in-circuit emulators that can be used for application				
ware	IE-78320-R Note	system development and debugging. Connect a host machine for debugging.				
		IE-78327-R can be used in common for the μ PD78322 subseries and the μ PD78328				
		subseries. IE-78320-R can be used for the μPD78322 subseries.				
	EP-78320GF-R	Emulation probe to connect IE-78327-R or IE-78320-R to the target system.				
	EP-78320GJ-R	EP-78320GF-R 80-pin plastic QFP				
	EP-78320L-R	EP-78320GJ-R 74-pin plastic QFP				
		EP-78320L-R 68-pin plastic QFJ				
Soft-	IE-78327-R	Program to control IE-78327-R on a host machine. Automatic execution of commands,				
ware	control program	etc., is enabled for more efficient debugging.				
	(IE controller)	Host machine Ordering code				
			OS	Supply medium	(product name)	
		PC-9800 series	MS-DOS	3.5-inch 2HD	μS5A13IE78327	
				5-inch 2HD	μS5A10IE78327	
		IBM PC/AT	PC DOS	3.5-inch 2HC	μS7B13IE78327	
		and compatible machine		5-inch 2HC	μS7B10IE78327	
	IE-78320-R	Program to control IE-78320-R on a host machine. Automatic execution of commands,				
	control program Note	etc., is enabled for more efficient debugging.				
	(IE controller)	Host machine Ordering code				
			OS	Supply medium	(product name)	
		PC-9800 series	MS-DOS	3.5-inch 2HD	μS5A13IE78320	
				5-inch 2HD	μS5A10IE78320	
		IBM PC/AT	PC DOS	5-inch 2HC	μS7B10IE78320	
		and compatible machine				

Remarks 1. The operation of the IE controller is guaranteed only on the host machine under the operating systems listed above.

2. μ PD78322 subseries: μ PD78320, 78322, 789322, 78323, 78324, 78P324, 78320(A), 78320(A1),


78320(A2), 78322(A), 78322(A1), 78322(A2), 78323(A), 78323(A1), 78323(A2), 78324(A), 78324(A1), 78324(A2), 78P324(A), 78P324(A1),

78P324(A2)

 μ PD78328 subseries: μ PD78327, 78328, 78P328, 78327(A), 78328(A)

Note Conventional IE-78320-R is a maintenance product. When purchasing a new incircuit emulator, use an alternative product IE-78327-R.

Development Tool Configuration

Note The socket is attached to the emulation probe.

Remarks The host machine and PG-1500 can be connected directly by RS-232-C.

B.2 Evaluation Tools

The following evaluation tools are provided to evaluate the μ PD78P322 function:

Ordering Code	Host Machine	Function
(product name)		
EB-78320-98	PC-9800 series	The μ PD78P322 function can be easily evaluated by connecting the evaluation tool to
		a host machine. The EB-78320-98/PC command system basically is compliant with the
EB-78320-PC	IBM PC/AT	IE-78327-R or IE-78320-R command system. Thus, easy transition to application system
	and compatible	development process by IE-78327-R or IE-78320-R can be made. The evaluation tools
	machine	enable turbo access manager (μ PD71P301) $^{\text{Note}}$ to be mounted on the printed circuit board.

Note Turbo access manager (μ PD71P301) is available for maintenance purpose only.

Cautions 1. EB-78320-98/PC is not the µPD78P322 application system development tool.

2. EB-78320-98/PC does not contain the emulation function at internal PROM execution of the μ PD78P322.

B.3 Embedded Software

The following embedded software products are readily available to support more efficient program development and maintenance:

Real-time OS

Real-time OS	The purpose of RX78	The purpose of RX78K/III is to realize a multi-task environment in a control area which requires			
(RX78K/III)	real-time processing.	real-time processing. RX78K/III allocates idle times of CPU to other processing to improve			
	overall performance of	overall performance of the system.			
	RX78K/III provides a				
	RX78K/III assembler	RX78K/III assembler package provides the RX78K/III nucleus and a tool (configurator) to prepare multiple information tables.			
	prepare multiple infor				
	Host machine	Host machine			
		OS	Supply medium	(product name)	
	PC-9800 series	MS-DOS	3.5-inch 2HD	μS5A13RX78320	
			5-inch 2HD	μS5A10RX78320	
	IBM PC/AT	PC DOS	3.5-inch 2HC	μS7B13RX78320	
	and compatible mach	ine	5-inch 2HC	μS7B10RX78320	

Caution When purchasing the RX78K/III, fill in the purchase application form in advance, and sign the User's Agreement.

Remark When using the RX78K/III Real-time OS, the RA78K/III assembler package (option) is necessary.

Fuzzy Inference Development Support System

Fuzzy Knowledge Data	Program supporting input of fuzzy knowledge data (fuzzy rule and membership function),					
Preparation Tool	input/editing (edit), and evaluation (simulation).					
(FE9000, FE9200)	Host machine				Ordering code	
		OS		Supply medium	(product name)	
	PC-9800 series	MS-DOS		3.5-inch 2HD	μS5A13FE9000	
				5-inch 2HD	μS5A10FE9000	
	IBM PC/AT	PC DOS	Windows™	3.5-inch 2HC	μS7B13FE9200	
	and compatible machine			5-inch 2HC	μS7B10FE9200	
Translator	Program converting fuzzy	knowledge	data obtaine	ed by using fuzzy kno	wledge data preparation	
(FT78K3)Note	tool to the assembler source program for the RA78K/III.					
	Host machine	Host machine				
		OS		Supply medium	(product name)	
	PC-9800 series	MS-DOS		3.5-inch 2HD	μS5A13FT78K3	
				5-inch 2HD	μS5A10FT78K3	
	IBM PC/AT	PC DOS		3.5-inch 2HC	μS7B13FT78K3	
	and compatible machine			5-inch 2HC	μS7B10FT78K3	
Fuzzy Inference Module	Program executing fuzzy	Program executing fuzzy inference. Fuzzy inference is executed by linking fuzzy knowledge				
(FI78K/III) ^{Note}	data converted by translator.					
	Host machine	Host machine			Ordering code	
		OS		Supply medium	(product name)	
	PC-9800 series	MS-DOS		3.5-inch 2HD	μS5A13FI78K3	
				5-inch 2HD	μS5A10FI78K3	
	IBM PC/AT	PC DOS		3.5-inch 2HC	μS7B13FI78K3	
	and compatible machine			5-inch 2HC	μS7B10FI78K3	
Fuzzy Inference Debugger Support software evaluating and adjusting fuzzy knowledge data at hardware				rdware level by using		
(FD78K/III)	in-circuit emulator.					
	Host machine				Ordering code	
		os		Supply medium	(product name)	
	PC-9800 series	MS-DOS		3.5-inch 2HD	μS5A13FD78K3	
				5-inch 2HD	μS5A10FD78K3	
	IBM PC/AT	PC DOS		3.5-inch 2HC	μS7B13FD78K3	
	and compatible machine			5-inch 2HC	μS7B10FD78K3	

Note Under development

[MEMO]

Note:

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

QTOP is a trademark of NEC Corporation.

MS-DOS and Windows are trademarks of Microsoft Corporation.

PC/AT and PC DOS are trademarks of IBM Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

TRON is an abbreviation of The Realtime Operating system Nucleus.

ITRON is an abbreviation of Industrial TRON.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed: μ PD78P322K, 78P322KC, 78P322KD The customer must judge the need for license: μ PD78P322GF-3B9, 78P322GJ-5BJ, 78P322L

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11