192-BIT AC-PDP DRIVER

DESCRIPTION

The μ PD16347 is a high-withstanding-voltage CMOS driver designed for use with a flat display panel such as a PDP, VFD, or EL panel. It consists of a 192-bit bi-directional shift register, 192-bit latch and high-withstanding-voltage CMOS driver. The logic block operates with a 5.0 V power supply and 3.3 V interface so that it can be directly connected to a gate array and microcomputer. The driver block provides a high-withstanding-voltage output: 80 V.
The logic and driver blocks are made of CMOS circuits, consuming lower power.

FEATURES

- 3-ch, 4-ch, 6-ch and 6-ch (3-ch + 3-ch) input port switching is possible using the IBS1 and IBS2 pins
- Many outputs: 192-bit output
- Clock transfer is switchable via the SDS pin between single edge and double edge
- Data control with transfer clock (external) and latch
- High-speed data transfer: fcLk $=60 \mathrm{MHz}$ MAX. (at loading of data)
- On-chip chip temperature detection circuit
- High withstanding voltage and high drive output: 80 V MAX., +15/-30 mA MAX.
- 3.3 V input interface (VDD1 = 5.0 V)
- High-withstanding-voltage CMOS structure

ORDERING INFORMATION

Part Number	Package
μ PD16347N-xxx	TCP (TAB package)

Remark The TCP's external shape is customized. To order the required shape, please contact one of our sales representatives.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

1. BLOCK DIAGRAM

(1) IBS1 = L, IBS2 = H: 3-bit input

Remark /xxx indicates active low signal.
(2) IBS1 = L, IBS2 = L: 4-bit input

(3) $\operatorname{IBS} 1=\mathrm{H}, \mathrm{IBS} 2=\mathrm{L}: 6$-bit input

(4) IBS1 = H, IBS2 = H: 6-bit (3-bit +3 -bit) input

2. PIN CONFIGURATION (IC pad surface)

μ PD16347N-xxx: TCP (TAB package)

Remark This figure does not specify the TCP package.

3. PIN FUNCTIONS

Symbol	Pin Name	1/O	Description
/LBLK	Low blanking	Input	/LBLK = L: All output = L
/HBLK	High blanking	Input	$/$ HBLK $=$ L: All output $=\mathrm{H}$
/LE	Latch enable	Input	Latch operation performed at the falling edge.
HZ	Output high impedance	Input	$\mathrm{HZ}=\mathrm{H}$: All output set to the high-impedance state
/CLR	Register clear	Input	/CLR = L: All shift register data cleared to the low level
A_{1} to $\mathrm{A}_{3(6)}$	Data	Input	The A_{1} to $A_{3(6)}$ are Data input pins. The data shift direction is switched inside the $R, / L$ pin.
CLK	Clock	Input	SDS $=\mathrm{H}$: Shift operation is executed at the rising and falling edges SDS = L: Shift operation is executed at the rising edge
R,/L	Shift direction control	Input	The shift direction control pin of shift register. The shift directions of the shift register are as follows. $\mathrm{R}, \mathrm{L}=\mathrm{H}$ (right shift): $S_{1}: A_{1} \rightarrow S_{1} . . . S_{190}$ (SR2 to SR_{6} also shift in the same direction.) $R, L=L$ (left shift): $\mathrm{SR}_{1}: \mathrm{A}_{1} \rightarrow \mathrm{~S}_{190} \ldots \mathrm{~S}_{1}$ (SR2 to SR_{6} also shift in the same direction.) Refer to 5. INTERNAL REGISTER.
$\begin{aligned} & \text { IBS1, } \\ & \text { IBS2 } \end{aligned}$	Input mode switch	Input	IBS1 $=\mathrm{H}, \mathrm{IBS} 2=\mathrm{H}: 6$-bit (3-bit +3 -bit) input, Length of shift register: 32 -bit IBS1 $=$ H, IBS2 $=$ L: 6-bit input, Length of shift register: 32 -bit IBS1 = L, IBS2 = H: 3-bit input, Length of shift register: 64 -bit IBS1 = L, IBS2 = L: 4-bit input, Length of shift register: 48-bit
DET	Temperature detection	Output	The DET is N -ch open-drain output. Low level is output (N -ch transistor: ON) via temperature detection.
SDS	Clock edge switch	Input	SDS $=\mathrm{H}$: Shift operation is executed at the rising and falling edges of CLK (double edge) SDS = L: Shift operation is executed at the rising edge of CLK (single edge)
O 1 to O_{192}	High withstanding voltage	Output	70 V
VDD1	Logic power supply	-	$5 \mathrm{~V} \pm 5 \%$
VDD2	Driver power supply	-	15 to 70 V
VDD3	Temperature detection power supply	-	$5 \mathrm{~V} \pm 10 \%$
Vss1	Logic ground	-	Connect to system ground
Vss2	Driver ground	-	Connect to system ground
Vss3	Temperature detection ground	-	Connect to system ground

Caution In 3-bit and 4-bit input mode, unused input pins must be held at the low level or high level.

4. TRUTH TABLE

Shift Register Block

Input			Shift Register
R,/L	SDS	CLK	
H	H	\uparrow or \downarrow	Right shift operation is executed.
H	H	H or L	Hold
H	L	\uparrow	Right shift operation is executed.
H	L	H or L	Hold
L	H	\uparrow or \downarrow	Left shift operation is executed.
L	H	H or L	Hold
L	L	\uparrow	Left shift operation is executed.
L	L	H or L	Hold

Latch Block

$/$ LE	Output State of Latch Section (/Ln)
\downarrow	Latch S_{n} data
H or L	Hold latch (output) data

Driver Block

A	/HBLK	/LBLK	HZ	Output State of Driver Block
				O_{1} to O_{192}
x	L	H	L	All driver output: H
x	x	L	L	All driver output: L
x	x	x	H	All driver output: High-impedance
L	H	H	L	L
H	H	H	L	H

Remark x: Hor L

5. INTERNAL REGISTER

Shift Direction (R,/L=H, right shift)

	3-bit input	4-bit input	6-bit input	6-bit (3-bit + 3-bit) input
SR_{1} (A_{1} input register)	$\mathrm{A}_{1} \rightarrow \mathrm{~S}_{1}, \mathrm{~S}_{4} \ldots \mathrm{~S}_{190}$	$\mathrm{A}_{1} \rightarrow \mathrm{~S}_{1}, \mathrm{~S}_{5} \ldots \mathrm{~S}_{189}$	$\mathrm{A}_{1} \rightarrow \mathrm{~S}_{1}, \mathrm{~S}_{7} \ldots \mathrm{~S}_{187}$	$\mathrm{A}_{1} \rightarrow \mathrm{~S}_{1}, \mathrm{~S}_{4} \ldots \mathrm{~S}_{94}$
SR_{2} (A_{2} input register)	$\mathrm{A}_{2} \rightarrow \mathrm{~S}_{2}, \mathrm{~S}_{5} \ldots \mathrm{~S}_{191}$	$\mathrm{A}_{2} \rightarrow \mathrm{~S}_{2}, \mathrm{~S}_{6} \ldots \mathrm{~S}_{190}$	$\mathrm{A}_{2} \rightarrow \mathrm{~S}_{2}, \mathrm{~S}_{8} \ldots \mathrm{~S}_{188}$	$\mathrm{A}_{2} \rightarrow \mathrm{~S}_{2}, \mathrm{~S}_{5} \ldots \mathrm{~S}_{95}$
SR_{3} (A_{3} input register)	$\mathrm{A}_{3} \rightarrow \mathrm{~S}_{3}, \mathrm{~S}_{6} \ldots \mathrm{~S}_{192}$	$\mathrm{A}_{3} \rightarrow \mathrm{~S}_{3}, \mathrm{~S}_{7} \ldots \mathrm{~S}_{191}$	$\mathrm{A}_{3} \rightarrow \mathrm{~S}_{3}, \mathrm{~S}_{9} \ldots \mathrm{~S}_{189}$	$\mathrm{A}_{3} \rightarrow \mathrm{~S}_{3}, \mathrm{~S}_{6} \ldots \mathrm{~S}_{96}$
SR_{4} (A_{4} input register)		$\mathrm{A}_{4} \rightarrow \mathrm{~S}_{4}, \mathrm{~S}_{8} \ldots \mathrm{~S}_{192}$	$\mathrm{A}_{4} \rightarrow \mathrm{~S}_{4}, \mathrm{~S}_{10} \ldots \mathrm{~S}_{190}$	$\mathrm{A}_{4} \rightarrow \mathrm{~S}_{97}, \mathrm{~S}_{100} \ldots \mathrm{~S}_{190}$
SR_{5} (A_{5} input register)			$\mathrm{A}_{5} \rightarrow \mathrm{~S}_{5}, \mathrm{~S}_{11} \ldots \mathrm{~S}_{191}$	$\mathrm{A}_{5} \rightarrow \mathrm{~S}_{98}, \mathrm{~S}_{101} \ldots \mathrm{~S}_{191}$
SR_{6} (A_{6} input register)			$\mathrm{A}_{6} \rightarrow \mathrm{~S}_{6}, \mathrm{~S}_{12} \ldots \mathrm{~S}_{192}$	$\mathrm{A}_{6} \rightarrow \mathrm{~S}_{99}, \mathrm{~S}_{102} \ldots \mathrm{~S}_{192}$

Shift Direction (R,/L=L, left shift)

	3-bit input	4-bit input	6-bit input	6-bit (3-bit + 3-bit) input
SR_{1} (A_{1} input register)	$\mathrm{A}_{1} \rightarrow \mathrm{~S}_{190}, \mathrm{~S}_{187} \ldots \mathrm{~S}_{1}$	$\mathrm{A}_{1} \rightarrow \mathrm{~S}_{189} \mathrm{~S}_{185} \ldots \mathrm{~S}_{1}$	$\mathrm{A}_{1} \rightarrow \mathrm{~S}_{187}, \mathrm{~S}_{181} \ldots \mathrm{~S}_{1}$	$\mathrm{A}_{1} \rightarrow \mathrm{~S}_{94}, \mathrm{~S}_{91} \ldots \mathrm{~S}_{1}$
SR_{2} (A_{2} input register)	$\mathrm{A}_{2} \rightarrow \mathrm{~S}_{191}, \mathrm{~S}_{188} \ldots \mathrm{~S}_{2}$	$\mathrm{A}_{2} \rightarrow \mathrm{~S}_{190}, \mathrm{~S}_{186} \ldots \mathrm{~S}_{2}$	$\mathrm{A}_{2} \rightarrow \mathrm{~S}_{188}, \mathrm{~S}_{182} \ldots \mathrm{~S}_{2}$	$\mathrm{A}_{2} \rightarrow \mathrm{~S}_{95}, \mathrm{~S}_{92} \ldots \mathrm{~S}_{2}$
SR_{3} (A_{3} input register)	$\mathrm{A}_{3} \rightarrow \mathrm{~S}_{192}, \mathrm{~S}_{189} \ldots \mathrm{~S}_{3}$	$\mathrm{A}_{3} \rightarrow \mathrm{~S}_{191}, \mathrm{~S}_{187} \ldots \mathrm{~S}_{3}$	$\mathrm{A}_{3} \rightarrow \mathrm{~S}_{189}, \mathrm{~S}_{183} \ldots \mathrm{~S}_{3}$	$\mathrm{A}_{3} \rightarrow \mathrm{~S}_{96}, \mathrm{~S}_{93} \ldots \mathrm{~S}_{3}$
SR_{4} (A_{4} input register)		$\mathrm{A}_{4} \rightarrow \mathrm{~S}_{192}, \mathrm{~S}_{188} \ldots \mathrm{~S}_{4}$	$\mathrm{A}_{4} \rightarrow \mathrm{~S}_{190}, \mathrm{~S}_{184} \ldots \mathrm{~S}_{4}$	$\mathrm{A}_{4} \rightarrow \mathrm{~S}_{190}, \mathrm{~S}_{187} \ldots \mathrm{~S}_{97}$
SR_{5} (A5 input register)			$\mathrm{A}_{5} \rightarrow \mathrm{~S}_{191}, \mathrm{~S}_{185} \ldots \mathrm{~S}_{5}$	$\mathrm{A}_{5} \rightarrow \mathrm{~S}_{191}, \mathrm{~S}_{188} \ldots \mathrm{~S}_{98}$
SR_{66} (A_{6} input register)			$\mathrm{A}_{6} \rightarrow \mathrm{~S}_{192}, \mathrm{~S}_{186} \ldots \mathrm{~S}_{6}$	$\mathrm{A}_{6} \rightarrow \mathrm{~S}_{192}, \mathrm{~S}_{189} \ldots \mathrm{~S}_{99}$

6. TIMING CHART

(1) IBS1 = L, IBS2 = H: 3-bit input, SDS = L: single edge

Remark Values in parentheses are when $\mathrm{R}, \mathrm{L}=\mathrm{L}$.
(2) $\operatorname{IBS} 1=\mathrm{L}$, IBS2 $=\mathrm{H}$: 3-bit input, $\mathrm{SDS}=\mathrm{H}$: double edge

Remark Values in parentheses are when $\mathrm{R}, \mathrm{L}=\mathrm{L}$.
(3) $\operatorname{IBS} 1=$ L, IBS2 = L: 4-bit input, SDS = L: single edge

Remark Values in parentheses are when $R, / L=L$.
(4) $\operatorname{IBS} 1=\mathrm{L}$, IBS2 $=\mathrm{L}:$ 4-bit input, SDS $=\mathrm{H}$: double edge

Remark Values in parentheses are when $R, / L=L$.
(5) IBS1 = H, IBS2 = L: 6-bit input, SDS = L: single edge

Remark Values in parentheses are when $R, / L=L$.
(6) $\operatorname{IBS} 1=\mathrm{H}, \mathrm{IBS} 2=\mathrm{L}: 6$-bit input, SDS $=\mathrm{H}$: double edge

Remark Values in parentheses are when $R, / L=L$.
(7) IBS1 = H, IBS2 = H: 6-bit (3-bit + 3-bit) input, SDS = L: single edge

Remark Values in parentheses are when $\mathrm{R}, / \mathrm{L}=\mathrm{L}$.
(8) IBS1 = H, IBS2 = H: 6-bit (3-bit + 3-bit) input, SDS = H: double edge

Remark Values in parentheses are when $R, / L=L$.

7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, $\left.\mathrm{V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=\mathrm{V}_{\mathrm{ss} 3}=0 \mathrm{~V}\right)$

Parameter	Symbol	Ratings	Unit
Logic and temperature detection supply voltage	$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 3}$	-0.5 to +6.0	V
Driver supply voltage	$\mathrm{V}_{\mathrm{DD} 2}$	-0.5 to +80	V
Logic input voltage	V_{11}	-0.5 to $\mathrm{V}_{\mathrm{DD} 1}+0.5$	V
Temperature detection input voltage	V_{13}	-0.5 to $\mathrm{V}_{\mathrm{DD} 3}+0.5$	+125
Operating junction temperature	T_{j}	-65 to +125	V
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	${ }^{\circ} \mathrm{C}$	

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Range ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=\mathrm{V}_{\mathrm{ss} 3}=0 \mathrm{~V}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Logic supply voltage	VDD1	4.75	5.0	5.25	V
Driver supply voltage	VDD2	15		70	V
Temperature detection supply voltage	VDD3	4.5	5.0	5.5	V
Logic high level input voltage	$\mathrm{V}_{\mathrm{H} 11}$	2.7		VDD1	V
Logic low level input voltage	$\mathrm{V}_{1 L 11}$	0		0.6	V
IBS and R,/L high level input voltage	V_{1+12}	0.7 VDD		VDD1	V
IBS and R,/L low level input voltage	V_{112}	0		$0.2 \mathrm{VDD1}$	V
Driver output current	loh2			-24	mA
	loL2			+13	mA

Electrical Characteristics ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 3}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=70 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS} 1}=\mathrm{V}_{\mathrm{SS} 2}=\mathrm{V}_{\mathrm{SS} 3}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High level output voltage	Voh21	$\mathrm{IOH2}=-0.52 \mathrm{~mA}$	69			V
	Voh22	$\mathrm{lOH2}=-5.2 \mathrm{~mA}$	65			V
Low level output voltage	Vol21	$\mathrm{loL2}=1.6 \mathrm{~mA}$			1.0	V
	Vol22	$\mathrm{loL2}=13 \mathrm{~mA}$			10	V
Input leakage current	1.	$\begin{aligned} & \mathrm{V}_{11}=\mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{SS} 1}, \\ & \mathrm{~V}_{13}=\mathrm{V}_{\mathrm{DD} 3} \text { or } \mathrm{V}_{\mathrm{SS} 3} \end{aligned}$			± 1.0	$\mu \mathrm{A}$
Logic high level input voltage	V ${ }_{\text {H11 }}$	$\mathrm{V}_{\mathrm{DD} 1}=4.75$ to 5.25 V	2.7		VDD1	V
Logic low level input voltage	VIL11	$\mathrm{V}_{\mathrm{DD} 1}=4.75$ to 5.25 V	0		0.6	V
IBS and R,/L high level input voltage	VIH12		$0.7 \mathrm{VDD1}$		VDD1	V
IBS and R,/L low level input voltage	VIL12		0		0.2 VDD1	V
Detection temperature	Tdet		110		135	${ }^{\circ} \mathrm{C}$
Detection temperature hysteresis width	Thys		10		15	${ }^{\circ} \mathrm{C}$
Temperature detection output (N -ch) characteristic	Rdet	Vss3 to DET voltage, $\mathrm{lo}=1 \mathrm{~mA}$			0.1 V ${ }^{\text {dD3 }}$	V
Static current dissipation	IdD11	Logic, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			1000	$\mu \mathrm{A}$
		Logic, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			600	$\mu \mathrm{A}$
	IdD12	Logic, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			$10^{\text {Note }}$	mA
		Logic, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$10^{\text {Note }}$	mA
	IDD3	Temperature detection, $\mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}$			1000	$\mu \mathrm{A}$
		Temperature detection, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			800	$\mu \mathrm{A}$
	IdD2	Driver, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			1000	$\mu \mathrm{A}$
		Driver, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			100	$\mu \mathrm{A}$

Note When input all input high level $\left(\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}\right.$ to $\mathrm{V}_{\mathrm{DD} 1}$, but both the $\mathrm{R}, / \mathrm{L}$ and IBS pins are fixed to $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS} 1}$ or $\left.\mathrm{V}_{\mathrm{DD} 1}\right)$

Switching Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 3}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=70 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=\mathrm{V}_{\mathrm{ss} 3}=0 \mathrm{~V}\right.$, Logic $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Driver $\mathrm{Cl}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{tr}_{\mathrm{t}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Propagation delay time	tpHL2	$/ \mathrm{LE} \downarrow \rightarrow \mathrm{O} 1$ to O_{192}			220	ns
	tpLH2				220	ns
	tpHL3	$/ \mathrm{HBLK} \rightarrow \mathrm{O}_{1}$ to O_{192}			205	ns
	tpLH3				205	ns
	tpHL4	$/$ LBLK $\rightarrow \mathrm{O}_{1}$ to O_{192}			200	ns
	tpLH4				200	ns
	tphz	$\begin{aligned} & \mathrm{HZ} \rightarrow \mathrm{O}_{1} \text { to } \mathrm{O}_{192}, \\ & \mathrm{RL}=10 \mathrm{k} \Omega \end{aligned}$			340	ns
	tpzH				220	ns
	tPLZ				340	ns
	tpzL				220	ns
Rise time	tTLH	O_{1} to O_{192}			220	ns
	ttLz	$\begin{aligned} & \mathrm{O}_{1} \text { to } \mathrm{O}_{192}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$			3	$\mu \mathrm{s}$
	tizH				220	ns
Fall time	tтHL	O_{1} to O_{192}			350	ns
	tthz	$\begin{aligned} & \mathrm{O}_{1} \text { to } \mathrm{O}_{192}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$			3	$\mu \mathrm{s}$
	ttzL				350	ns
Maximum clock frequency	fmax.	Loading of data, duty = 50\%	60			MHz
Input capacitance	Cl_{1}				15	pF

Timing Requirement $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=4.75\right.$ to $\left.5.25 \mathrm{~V}, \mathrm{~V} \mathrm{ss} 1=\mathrm{V}_{\mathrm{ss} 2}=\mathrm{V}_{\mathrm{ss} 3}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock pulse width	PWclk		8			ns
Latch enable pulse width	PW/LE		8			ns
Blank pulse width	PW Blik	/HBLK, /LBLK	600			ns
HZ pulse width	PWhz	$\mathrm{RL}=10 \mathrm{k} \Omega$	3.3			$\mu \mathrm{s}$
/CLR pulse width	PW/CLR		12			ns
/CLR timing	tcle		6			ns
Data setup time	tsetup		3			ns
Data hold time	thold		3			ns
Latch enable Time	tLLE11, the21		8			ns
	tLE12, tLEE22		8			ns

* Detection Temperature Hysteresis Width and Detection Output

Note Change of Thys linked with Tdet's.

Switching Characteristics Waveform (1/3)

Remark The falling timing of CLK is at $\mathrm{SDS}=\mathrm{H}$ (double edge).

Switching Characteristics Waveform (2/3)

Switching Characteristics Waveform (3/3)

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference Documents

NEC Semiconductor Device Reliability/Quality Control System (C10983E)
Quality Grades On NEC Semiconductor Devices (C11531E)

- The information in this document is current as of June, 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.
(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

