TOSHIBA 2SC5086FT ### TOSHIBA TRANSISTOR SILICON NPN EPITAXIAL PLANAR TYPE # 2 S C 5 0 8 6 F T VHF~UHF BAND LOW NOISE AMPLIFIER APPLICATIONS - Low Noise Figure, High Gain. - NF = 1.1dB, $|S_{21e}|^2 = 11dB$ (f = 1GHz) #### MAXIMUM RATINGS ($Ta = 25^{\circ}C$) | CHARACTERISTIC | SYMBOL | RATING | UNIT | |-----------------------------|--------------------|---------|------| | Collector-Base Voltage | V_{CBO} | 20 | V | | Collector-Emitter Voltage | v_{CEO} | 12 | V | | Emitter-Base Voltage | $v_{ m EBO}$ | 3 | V | | Base Current | $I_{ m B}$ | 40 | mA | | Collector Current | $I_{\mathbf{C}}$ | 80 | mA | | Collector Power Dissipation | $P_{\mathbf{C}}$ | 100 | mW | | Junction Temperature | T_{j} | 125 | °C | | Storage Temperature Range | $\mathrm{T_{stg}}$ | -55~125 | °C | ### **MARKING** # 1.2 ± 0.05 0.8 ± 0.05 22 0.32 0.9 ± 0.1 0.45 L 0.45 3 14 ± 0.05 Unit in mm **EMITTER** 2. TESM COLLECTOR **JEDEC** EIAJ TOSHIBA 2-1B1A BASE ## MICROWAVE CHARACTERISTICS (Ta = 25°C) | CHARACTERISTIC | SYMBOL | TEST CONDITION | MIN. | TYP. | MAX. | UNIT | |--------------------------------------|-------------------|--|------|------|------|------| | Transition Frequency | ${ m f_T}$ | $V_{CE} = 10V$, $I_{C} = 20mA$ | 5 | 7 | _ | GHz | | Incortion (-oin | $ S_{21e} ^2(1)$ | $V_{CE} = 10V, I_{C} = 20mA, f = 500MHz$ | _ | 16.5 | _ | dB | | | $ S_{21e} ^2$ (2) | $V_{CE} = 10V, I_{C} = 20mA, f = 1GHz$ | 7.5 | 11 | _ | | | Noise Figure $ \frac{NF(1)}{NF(2)} $ | NF (1) | $V_{CE} = 10V, I_{C} = 5mA, f = 500MHz$ | _ | 1 | _ | dB | | | NF (2) | $V_{CE}=10V$, $I_{C}=5mA$, $f=1GHz$ | | 1.1 | 2 | u.b | #### ELECTRICAL CHARACTERISTICS (Ta = 25°C) | CHARACTERISTIC | SYMBOL | TEST CONDITION | MIN. | TYP. | MAX. | UNIT | |------------------------------|--------------------------|-------------------------------------|------|------|------|---------| | Collector Cut-off Current | I_{CBO} | $V_{CB} = 10V, I_{E} = 0$ | _ | _ | 1 | μ A | | Emitter Cut-off Current | I_{EBO} | $V_{EB}=1V, I_{C}=0$ | _ | _ | 1 | μ A | | DC Current Gain | h _{FE} (Note 1) | $V_{CE}=10V, I_{C}=20mA$ | 80 | _ | 240 | _ | | Output Capacitance | C_{ob} | $V_{CB} = 10V, I_{E} = 0, f = 1MHz$ | _ | 1.0 | _ | рF | | Reverse Transfer Capacitance | $\mathrm{C_{re}}$ | (Note 2) | _ | 0.65 | 1.15 | рF | $O: 80\sim160, Y: 120\sim240$ (Note 1): hFE Classification (Note 2): Cre is measured by 3 terminal method with capacitance bridge. 961001EAA2 - TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. TOSHIBA Semiconductor Reliability Handbook. CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.